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The research reported here explores the possibility of field-emission cathodes for use in
EP that have the ability to be re-generated when the emitter tip becomes damaged. The
method for re-generation takes advantage of Taylor cone formation in an effort to solidify,
or quench, an operating liquid-metal-ion-source (LMIS) to preserve the sharp Taylor cone
tip for use as a field-emission cathode. Electron emission I-V curves were taken after Taylor
cones were formed by quenching the LMIS at different discharge currents. It is shown that
quenching the LMIS at as low as 2 HA produced an increase in electron discharge current as
compared with the unquenched emitter, 53 nA as compared with 25 nA at an extraction
voltage of 2.7 kV. When the ion emission current at quench was increased to 3 pA and then
25 pA, the discharge that was measured increased to 210 nA for the 3 pA emitter and 1.02
MHA for the 25 YA emitter at an extraction voltage of 2.7 kV. Fitting the electron emission I-V
characteristics using Fowler-Nordheim theory indicated tip radii as small as 80 nm were
formed during the LMIS quenching process.

Nomenclature

= Fowler-Nordheim term (see Equation 2)
Fowler-Nordheim term (see Equation 3)

discharge current (I)

empirical relation relating tip radius and gap spacing
extraction voltage (V)

emitter tip radius (m)

Nordheim image-correction term

= work function (eV)

= Fowler-Nordheim term
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I. Introduction

IQUID-METAL ion sources (LMIS) have found extensive use as ion sources of high brightness in focused ion

beam materials processing applications' and, more recently, as EP thrusters via a technology commonly known
as field-emission electric propulsion (FEEP).>** In an LMIS or FEEP thruster, an intense electric field is created
near the surface of a low melting-temperature liquid metal, such as In, by a downstream electrode. A balance
between the liquid surface tension and electrostatic forces causes a structure known as a Taylor cone to form in the
liquid. The mechanisms of Taylor cone formation are by now well understood.” Because the Taylor cone has a very
sharp tip, geometric enhancement of the local electric field at the cone tip is sufficient to extract metal ions directly
from the liquid.”> The ions emerge from a very narrow (few nanometer diameter) liquid jet at the cone apex and are
subsequently accelerated by the electric field to either produce thrust (FEEP) or for materials processing applications
(LMIS). Other applications and areas of interest for the use of focused ion beams include lithography,
semiconductor doping, sample preparation for TEM imaging, circuit repair, scanning ion microscopy, and scanning
ion mass spectroscopy.

The research reported here takes advantage of Taylor cone formation in an effort to solidify, or quench, an
operating LMIS to preserve the sharp Taylor cone tip for use as a field-emission cathode for EP. The resulting metal
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structure will have a tip radius of 10’s to 100’s of nanometers, which is ideal for Fowler-Nordheim emission. By
reversing the polarity of the LMIS, the solid-metal tip will then function as a cold electron emitter. The motivation
for this is due to the limited lifetime of current micro-fabricated field emitters. As electron discharge is continued
for long durations, the emitter tip begins to wear and blunt. As the sharpness of the emitter tip decreases, the local
electric field decreases. This circumstance is unfavorable and eventually renders the emitter tip useless as an
electrode source. Where current field emitters would be destroyed at this point, the process described here of
applying heat to re-melt the In and switching the polarity back to obtain ion emission allows for the re-generation of
a sharp Taylor cone. Another advantage the In coating has is that tips coated with In have a lower work function
than W, 3.5 eV for In as opposed to W at 4.5 eV.” So once a sharp tip has been formed, it can once again be used for
electron emission.

While never applied to EP or space-based applications, the idea to use a liquid-metal Taylor cone as a combined
electron/ion source is not new. The earliest documentation of a liquid-metal electron source (LMES) was the work
of Swanson and Schwind.® Because the formation of a Taylor cone is independent of field polarity, Swanson and
Schwind applied electron-extracting fields to a liquid metal in an effort to coax electron emission from the
(nonsolidified) cone. Their early paper reports repetitive pulsed electron emission from liquid Ga-In Taylor cones
formed on the tip of a W needle electrode with current pulses as high as 250 A for 10 msec at ~50,000 pulses-per-
second. A field-emission-initiated explosive emission process during which a small portion of the liquid metal is
expelled was proposed to describe the behavior. The phenomena responsible for pulsed emission were supported by
Gomer the following year.” Later on, using Ga and In, Rao et. al. found that it is possible to obtain dc electron
emission if the LMES is first operated as an LMIS and then the Taylor cone is “frozen in.”'’ It is now understood
that, during operation as an LMIS, the Taylor cone forms a jet-like protrusion at the cone apex that solidifies when
the cone is quenched by removing heater power. It is the protrusion that is responsible for the stable electron
emission when the polarity is changed to emit electrons. Formation of the protrusion was determined to be reversible
and reproducible.

This research focuses on using a single field emitter that can function as both an ion and an electron source in an
attempt to solve the problem of tip degradation by allowing for the possibility of tip re-generation. The primary goal
of the research reported here was to determine if it was possible to use a quenched Taylor cone from an ion emitting
tip to obtain electron emission. Further testing of different quenching conditions and emitter heating currents was
also investigated to determine what type of effect both have on electron discharge I-V characteristics.

II. Description of Apparatus

Sharp W needles were formed by electrochemically etching W wires in a 2M NaOH solution. The etching
procedure utilized was similar to the method used and described in further detail by Ekvall.'"'  Using this etching
technique it was possible to obtain reproducible tip diameters from the 100’s of nanometers range up to a few
microns, depending on the etch conditions.

The sharpened W tips were then coated with In by dipping the heated filament in a liquid crucible of In.  The
etched and coated tips were then inserted into a fixture that served as both a heater as well as an In reservoir. An
emitter fixture schematic can be seen in Figure 1. A planar stainless-steel extraction electrode was positioned
downstream of the tip. Typical gap spacing between emitter tip and extraction electrode was 1.0 to 1.5 mm.
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Figure 1. LMIS/electron emitter fixture.

To operate the tip as an LMIS, the emitter heater was used to maintain the In reservoir above the melting
temperature of In, which is 156.6 deg. C. For electron emission the emitter heater was un-powered, solidifying the
In in the reservoir as well as on the emitter tip. The experimental setup for ion and electron emission is shown in
Figures 2 and 3, respectively. A current amplifier with gain of 10° V/A was used to amplify the discharge signal so
that the discharge current could be easily recorded on an oscilloscope.
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Figure 2. Electrical schematic of a single Figure 3. Electric schematic of a single needle
needle LMIS emitter electrode. field emission electron source.

All of the testing reported here was performed in a UHV chamber at Michigan Technological University’s Yoke
Khin Yap Research Lab. Research was performed in a 24”-diameter by 8”-deep vacuum chamber. The tank was
evacuated using a single turbo-molecular pump and backed by a mechanical pump. Vacuum pressure of 107 Torr
could be achieved in approximately 24 hours.

ITII. Results

A scanning electron microscope (SEM) image taken of a typical emitter tip, prior to In coating, can be seen in
Figure 4. To achieve ion emission, the emitter heating supply was enabled and increased to attain a suitable
temperature for the indium to melt. The heater current was held constant for 45 minutes to allow the fixture to reach
thermal equilibrium prior to attempting ion emission. The extraction electrode was then biased with a negative
voltage and the emitter was grounded to obtain ion emission. Once ion emission was achieved and stabilized (which
sometimes took up to several minutes), discharge I-V characteristics were taken at various emitter heating currents,
as shown in Figure 5. To solidify the Taylor cone, the emission was quenched by turning off the heater. For this
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experiment, quenching occurred over 90 seconds when the emission was 2 LA and approximately 200 seconds when
emission was 25 PA. A characteristic quenching curve is presented in Figure 6.

30pm
Figure 4. SEM image of an electrochemically
etched W wire.
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Figure 5. Ion emission current vs extraction voltage at two heater
currents.
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Figure 6. Typical quenching curve for Taylor cone formation from a 2
MA discharge after the emitter heater has been disabled at time t=0.

The Taylor cones were quenched at three different discharge currents and then used to obtain electron I-V
characteristics. As shown in Figure 7, the most electron emission that was achieved was from the emitter tip that
had been quenched at 25 HA. The next greatest emission was from the emitter tip quenched at 3 nA, and the least
amount of electron discharge current from a quenched LMIS was from the tip quenched at 2 pA. It should be noted
that while quenching the LMIS at 3 pA, the emission current was unstable and may account for the irregular trace in
Figure 7: it is unknown whether the ion emission ceased because the cone solidified or if some other mechanism was
responsible, such that the In solidified under a much lower emission current.

The electron emission characteristics from the quenched ion sources are compared in Figure 7 with an electron I-
V curve that was obtained from the needle before any ion emission/Taylor cone formation was performed. This was
done so that a baseline could be established for electron I-V characteristics with the as-etched needle for comparison
with the frozen Taylor cone configurations. It is clear from Figure 7 that the quenching process greatly enhanced
the electron field emission when compared to the blunt as-etched needle behavior.
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Figure 7. Electron I-V characteristics prior to quenching a Taylor cone,
quenching at 2 nA, 3 nA and quenching at 25 pA.

IV. Discussion

It was found that by operating an In field emitter as an LMIS and quenching the tip to form a Taylor cone by
removing the emitter heat while leaving the extraction electrode at a constant voltage it was possible to obtain an
increase in electron discharge. The data show that quenching at as low as 2 LA produced an increase in electron
discharge current as compared with the unquenched emitter. When the current at quench was increased to 3 and 25
UA, the discharge that was measured increased greatly. A trend can be noticed that quenching at higher ion
emission currents yields increased electron emission at lower extraction voltages.

Using the electron I-V curves along with the Fowler-Nordheim equation, a theoretical estimate of the emitter tip
radius can be made. For tip radius evaluation, Gomer’s technique of applying the following Fowler-Nordheim
equation was used,

Lz = aexp[;(’])mj, Equation [1]
1% 1%
where a and b’ are introduced as the following,
a=A62x10°(u/ )" (u+¢)" (akr)™, Equation [2]
b'=6.8x10" gkr. Equation [3]

In this series of equations / is the discharge current measured in amperes, V is the extraction voltage measured in
volts, ¢ is the work function in eV, A is the total emitting area, o is the Nordheim image-correction factor, and a and
b’ are curve fits corresponding to characteristics of the I-V data plotted as ln(I / Vz) versus 1/V .12

When plotted, the graph of ln(I / Vz) versus 1/V is linear and according to Gomer’s derivation has an intercept

of In(a) and a slope of b'¢3/ *. Using Equation 3 and taking @ to be 1 and k equal to 5 as instructed by Gomer, the

tip radius, r, can be approximated to within 20%.'> Table 1 shows the estimated magnitude of the tip radius
corresponding to each electron discharge I-V curve.
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Current at Voltage at | Tip Radius
Quench (UA) | Quench (kV) (nm)

N/A N/A] 230
2 3.0 220

3 3.2 102
25 3.2 80,

Table 1. Estimations of emitter tip radii at
various quenching currents using Gomer’s
Fowler-Nordheim analysis.

V. Conclusions

In conclusion, it was determined that an In emitter tip can be regenerated as long as there is a sufficient supply of
In to form a Taylor cone. Also, the I-V characteristics of the field emitter can be altered depending on which
heating and quenching currents are chosen. It was shown that quenching at higher ion emission current produced
larger electron emission at lower extraction voltages than when quenched at lower current, implying that the emitter
tip radius is reduced when quenching occurs at higher ion emission current.

Future work that is planned is to perform long duration tests of electron discharge to determine how often emitter
tips must be regenerated. Also, operating the emitters in different levels of vacuum will be experimented with, as
well as in low-density ambient plasma environments that would be expected in the vicinity of EP thrusters.
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