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Abstract

You know, it would be sufficient to really understand the electron.
Albert Einstein

A Hall thruster, an E × B device used for in-space propulsion, utilizes an axial
electric field to electrostatically accelerate plasma propellant from the spacecraft. The
axial electric field is created by positively biasing the anode so that the positively-
charged ions may be accelerated (repelled) from the thruster, which produces thrust.
However, plasma electrons are much smaller than ions and may be accelerated much
more quickly toward the anode; if electrons were not impeded, a "short circuit" due to
the electron flow would eliminate the thrust mechanism. Therefore, a magnetic field
serves to "magnetize" plasma electrons internal to the thruster and confines them
in gyro-orbits within the discharge channel. Without outside factors electrons would
be confined indefinitely; however, electron-neutral collisions provide a mechanism to
free electrons from their orbits allowing electrons to cross the magnetic field toward
the anode, where this process is described by classical transport theory. To make
matters worse, cross-field electron transport has been observed to be 100-1000 times
that predicted by classical collisional theory, providing an efficiency loss mechanism
and an obstacle for modeling and simulations in Hall thrusters.

The main difficulty in studying electron transport in Hall thrusters is the coupling
that exists between the plasma and the fields, where the plasma creates and yet is
influenced by the electric field. A device has been constructed at MTU’s Isp Lab,
the Hall Electron Mobility Gage, which was designed specifically to study electron
transport in E × B devices, where the coupling between the plasma and electric
field was virtually eliminated. In this device the two most cited contributors to
electron transport in Hall thrusters, fluctuation-induced transport, and wall effects,
were absent. Removing the dielectric walls and plasma fluctuations, while maintaining
the field environment in vacuum, has allowed the study of electron dynamics in Hall
thruster fields where the electrons behave as test particles in prescribed fields, greatly
simplifying the environment. Therefore, it was possible to observe any effects on
transport not linked to the cited mechanisms, and it was possible to observe trends
of the enhanced mobility with control parameters of electric and magnetic fields and
neutral density– parameters that are not independently variable in a Hall thruster.

The result of the investigation was the observation of electron transport that
was ∼ 20-100 times the classical prediction. The cross-field electron transport in the
Mobility Gage was generally lower than that found in a Hall thruster so these findings
do not negate the possibility of fluctuations and/or wall collisions contributing to
transport in a Hall thruster. However, this research led to the observation of enhanced
cross-field transport that had not been previously isolated in Hall thruster fields,
which is not reliant on momentum-transfer collisions, wall collisions or fluctuations.
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Chapter 1

Introduction

1.1 Hall Thruster Overview

Hall thrusters are highly efficient in-space propulsion devices used mainly for satellite

station-keeping and orbit transfer maneuvers. The early development of the Hall

thruster began in the U.S. and Russia independently in the early 1960s. In the late

1960s the U.S. diverted their research efforts to other devices with higher attainable

specific impulse, most specifically the gridded-ion thruster[10]. The Russian Hall

thruster effort continued, and in 1972 the first operational Hall thruster, the SPT-60,

was launched aboard the Meteor spacecraft[11]. Over the next 30 years more than

140 Russian Hall thrusters were launched as primary propulsion aboard spacecraft.

Throughout the Russian effort efficiency analyses and performance measures were

used to optimize Hall thruster performance[11, 12].

Due to the success of the Russian Hall thruster program and the release of the

Russian technical documents outlining the development efforts of Hall thrusters fol-

lowing the fall of the USSR, the U.S. launched plans to pursue Hall thruster re-

search and integrate Hall thruster technology into existing systems in the 1990s. Hall

thrusters are particularly well suited for satellite station-keeping and orbit transfer
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maneuvers, which has been the main use of the technology[13]. The first Hall thruster

on a U.S. spacecraft was the Russian-designed and -built D-55 TAL, launched in 1998

for the National Reconnaissance Office (NRO) Space Technology Experiment Satel-

lite (STEX)[14], a mission designed specifically for testing and validation of advanced

propulsion concepts. The European Space Agency (ESA) used a Hall thruster as

primary propulsion for the lunar orbiting mission, SMART-1 (Small Mission for Ad-

vances Research in Technology)[15]. The first commercial use of a Hall thruster was

in 2004 by Space Systems Loral for the MBSAT satellite using SPT-100s[16] man-

ufactured by the Russian company, Fakel. It was not until December of 2006 that

a U.S. designed Hall thruster was put in operation; the BHT-200 Hall thruster was

launched for the Air Force TacSat-2, which was designed and built by Busek Co., and

successful in-space operation was confirmed in March of 2007[17]. Hall thrusters have

grown in acceptance in the U.S. in recent years and plans are in place for the use of

the Aerojet-designed BPT-4000 by Lockheed Martin Space Systems for the Air Force

Advanced-EHF defense communications satellite[18]. Mission analysis has also been

presented for using the BPT-4000 for deep space missions[19] which was the original

vision of electric propulsion technology as outlined in the early 1900s[20].

There are two competing Hall thruster configurations, the anode-layer (TAL) and

the stationary plasma thruster (SPT). The differences between the two will not be

discussed at length but are mentioned to point out that variations in Hall thruster

configuration exist and this dissertation is concerned with the SPT-type Hall thruster.

(A detailed description of each can be found in Ref. [11].) The description of Hall

thruster physics from this point forward is in reference to the SPT-type Hall thruster.

The physics of a Hall thruster will be covered in more detail in Chapter 3 and only a

brief overview is presented here. Fig. 1.1 shows a picture of a flight-scale Hall thruster

in operation and a cross-section illustrating the main features of a Hall thruster. Hall

thrusters are operated by employing an axial electric field, Ez, through the application

of a high positive voltage on the anode, which repels positive ions from the spacecraft.
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This acceleration of ions provides the thrust needed to accelerate the spacecraft[11].

A cathode external to the main thruster body supplies electrons to the discharge

Figure 1.1: Hall Thruster in Operation (left) and schematic of a Hall
thruster cross section (right).

stream of ions so that the spacecraft remains neutral. In addition, the cathode also

supplies electrons to the discharge channel for the purpose of ionizing propellant

neutrals through electron-impact ionization. Since electrons are highly mobile due

to their small mass, any applied electric field would cause the electrons to stream to

the anode and the massive ions would experience negligible acceleration. Therefore,

by applying a radial magnetic field, Br, the axial velocity of the electrons is turned

to a gyration perpendicular to the applied magnetic field and their motion to the

anode is significantly inhibited. Because of this, the ions, whose gyro-radius is much

larger than the thruster dimensions due to their large mass, can be accelerated by

the electric field, where their deflection due to the magnetic field is negligible, while

electron motion is impeded. (For a detailed discussion of charged particle motion

the reader is referred to Section 2.1.1 as only a qualitative description is presented

here.) Electrons are able to migrate to the anode across the radial magnetic field

lines by cross-field mobility; this creates a current indicated on Fig. 1.2 as "recycle

current." (The details of cross-field mobility are presented in greater detail in Sections
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Figure 1.2: Cross-field electron mobility in the Hall thruster discharge chan-
nel leads to "recycle" current.

2.2 and 2.3.) Axial electron mobility perpendicular to the magnetic field has been

found to be 100-1000 times larger than classically predicted[21], which limits Hall

thruster efficiency because of the excess current to the anode. At high discharge

voltages electron mobility to the anode has been found to degrade the efficiency of

the thruster[22] and to limit the exit velocity to below ∼30,000 m/s (Isp ∼3,000 s) if

the thruster is to be operated at optimal efficiency.

1.2 Electron Mobility in Hall Thrusters

Cross-field electron mobility, µ⊥, is defined as the constant of proportionality between

the bulk cross-field velocity of electrons, u⊥, and the electric field transverse to the
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magnetic field, E⊥. This relation is given by

u⊥,net = µ⊥E⊥ (1.1)

Classical theory accounts for electrons’ ability to cross magnetic field lines by

momentum-transfer collisions, which free the electrons from their gyro-orbits allow-

ing them to migrate perpendicular to the field toward the anode. It is well known

that electron mobility in Hall thrusters is much higher than can be accounted for by

momentum-transfer collisions alone and is 100-1000 times the classical collisional

model[21]. Therefore, an unknown mechanism exists, separate from momentum-

transfer collisions, that is responsible for the experimentally observed mobility, gener-

ally called "anomalous" or "collisionless" mobility. Several theories exist to account

for the "anomalous" mobility observed in Hall thrusters (covered in detail in Sections

2.3, 3.3.2, and 3.3.3) but the physical description of the enhanced mobility from first

principles remains unknown. The theories of Hall thruster anomalous mobility can

be generally categorized into two main groups: wall effects (3.3.2) and fluctuation-

induced mobility(3.3.3).

Transport due to wall effects comes from the idea that an electron suffering

a collision with a channel wall should have the same effect as an electron-neutral

collision, which would contribute to the mobility. Since electrons are thermally mobile

along radial magnetic field lines, they may suffer these collisions at the inner and outer

channel walls. However in operation, a negative sheath builds up at the channel

walls repelling the bulk of electrons from the walls and only electrons with energy

sufficient to overcome this sheath may reach the walls. Therefore, quantifying the

wall collisions is not entirely straightforward[23], but estimates show that near-wall

conductivity does not adequately account for the entirety of the enhanced mobility

observed[24].

Fluctuation-induced transport states that oscillations can contribute to the cross-
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field electron mobility. The plasma environment of a Hall thruster is known to be

non-quiescent, where field and density oscillations in the discharge chamber have been

observed and characterized over a large range of frequencies[25] spanning from 1 kHz

to 5 MHz, with investigations ongoing to characterize higher frequency oscillations up

to 10 MHz and higher[26]. The main idea behind fluctuation-induced mobility in a

Hall thruster is that a fluctuating electric potential creates axial E×B drifts resulting

in a net transport toward the anode, due to the second-order effect in the correlation

of potential and density fluctuations. Fluctuation-induced mobility is complicated to

diagnose or isolate because the processes are coupled, where the fields control and are

controlled by the electron motion. This is further complicated by geometrical effects

and sheath effects, which act to enhance or dampen various waves and modes in the

plasma, so that the resulting mobility is highly dependent on the specific geometry

of the thruster[27].

Having a greater understanding of the electron mobility in a Hall thruster would

be useful in several respects. The obvious aspiration would be to eliminate the ex-

cess mobility. If Hall thruster electron mobility could be suppressed to the classical

value, Hall thrusters within the typical operating regime could achieve much higher

efficiencies, as the backstreaming electron current usually accounts for 20-30 percent

of the total discharge current (i.e. Ie/Id ∼ 0.2−0.3)[28, 12]. Based on the analysis by

Kim[12], if the electron contribution to the discharge current is reduced by a factor of

1/10 (Ie/Id ∼ 0.02 − 0.03), a Hall thruster at 50 percent total efficiency could stand

to gain ∼ 30 percent in efficiency. This is a gross approximation, however, because

the assumption was made that all other efficiency parameters remain constant, and

it is suspected that in reality there would be drastic changes in the ionization and

acceleration processes. Even so, the point remains that the electron current is an

efficiency loss mechanism in a Hall thruster and suppressing it could correspond to

efficiency gains. Furthermore, at high discharge voltages the excess electron mobility

is thought to be responsible for the limitation of Isp[22], so suppressing the electron
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mobility could also extend the operating regime of a Hall thruster.

Suppressing the electron mobility could create a more ideal thruster, in terms of

efficiency or extending the range of operating parameters, but practically speaking,

the suppression of electron mobility to the classical value is not feasible in the near

term due to the widespread lack of understanding in turbulent plasma transport.

A more realizable benefit to understanding Hall thruster electron mobility is the

advantage provided to modeling and scaling of Hall thrusters. Modeling efforts of

the Hall thruster discharge have led to highly accurate predictions of Hall thruster

properties including performance parameters such as thrust, specific impulse and

efficiency, discharge parameters such as the plasma potential structure, ionization and

acceleration regions, and time varying behavior such as ionization oscillations, transit

time oscillations and the time variation of the ion energy distribution function[29,

30, 31, 32, 33, 34]. However, these codes are limited because the predictions are

highly dependent on the treatment of electron mobility, which varies between models

but is almost always treated empirically based on experimental data. Some attempts

have been made to generalize electron transport by region in the Hall thruster[32, 34]

so that the models can be applied to new geometries and operating regimes (for

example, using the Bohm diffusion and mobility coefficients outside the channel and

transitioning to wall-collision dominated transport inside the channel). However, the

results of these models can not be considered entirely reliable, since the electron

mobility is thought to be highly dependent on plasma geometry and sheath structure

and the physics underlying these dependencies are not present in such models. A

complete understanding of the physics involved in anomalous mobility, from first

principles, could substantially improve modeling efforts, so that Hall thruster models

can be used for design and optimization without the use of corresponding experimental

data.

In studying electron mobility in Hall thrusters it is very difficult to separate the

effects of individual parameters because as one parameter changes, the entire plasma
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environment responds. For example, in changing the magnetic field strength or shape

in a Hall thruster, the plasma responds such that one has also changed the electric

field strength and shape, the electron density, and the electron temperature, which

act to change the plasma properties such as the Debye length and plasma frequency,

resulting in changed oscillatory behavior. The ionization and acceleration regions

are also changed by the above parameters, and thus neutral density and momentum

transfer collision frequency have changed as well. Therefore, the direct effect of the

magnetic field on mobility can never be investigated as a standalone parameter in a

Hall thruster. One must rely on models or empirical formulas to predict the properties

as a result of the change in one parameter (or resulting properties can be experimen-

tally measured), so that mobility can be only investigated in response to all of the

properties that have changed. Historically, models have not been able to accurately

predict the properties of the Hall thruster discharge without using fit parameters that

are based on experimental data specific to the thruster being modeled. In determin-

ing the origin of anomalous mobility it would be useful to be able to investigate the

trends of the mobility in response to each parameter independently. If the response

of anomalous mobility to a change in each parameter is known, much insight can be

gained concerning the physical mechanism responsible for the anomalous mobility.

1.3 Problem Statement, Aim, and Scope

The exact physics of electron mobility in Hall thrusters remains largely unknown in

the electric propulsion research community. Electron mobility, especially fluctuation-

induced and/or "anomalous" mobility, is a multi-dimensional problem where there

is a significant gap between theory and experiment. The coupled nature of the self-

fields and transport make it a very difficult non-linear problem to solve explicitly.

The aim of this work is to reproduce the Hall thruster "anomalous" electron mobility

in a highly controlled, uncoupled environment, where parameters such as the electric
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field structure, electron density, and field fluctuations can be measured and controlled

externally. The goal in this investigation is not to determine the origin and growth of

instabilities or other contributors to anomalous mobility but to provide an environ-

ment where these contributors can be observed and/or controlled in a straightforward

manner. In this environment, electron mobility trends can be observed in response to

each controllable parameter independently so that the physical mechanisms respon-

sible for anomalous mobility can be investigated from first principles.

Toward this goal, an apparatus was constructed, the Hall Electron Mobility Gage,

as a diagnostic tool to investigate anomalous mobility in an "uncoupled" environment.

The most important difference between this device and a Hall thruster was the absence

of waves and oscillations due to an extremely low-density plasma where collective

effects are negligible. Also, the dielectric walls typically found in a Hall thruster

discharge channel were removed, which greatly simplified the electric field. The Hall

Electron Mobility Gage provided the unique ability to observe mobility in response

to a single parameter while holding all other variables essentially constant. This

made it possible to examine the trends of the mobility in response to fundamental

parameters such as magnetic field and electric field strengths and neutral density,

which in a Hall thruster would not be feasible. Anomalous mobility was observed in

the simplified environment of this device indicating that a mechanism exists, separate

from plasma fluctuations and wall effects, that is responsible for enhanced mobility.

The magnitude of mobility observed in the Hall Electron Mobility Gage was lower

than that which is typically observed in Hall thrusters, so these results do not negate

the possibility of wall-effects and/or fluctuations contributing to mobility. However,

the investigation presented herein has identified that another mobility mechanism

exists even in the absence of wall collisions or fluctuations. The goal of this project

was to confirm that the observed mobility could not be accounted for by traditional

classical mechanisms (momentum-transfer collisions), observe trends of the anomalous

mobility, make suggestions for the source of the elevated mobility and correlate these

9



to mobility mechanisms that could also be present in a Hall thruster.

1.4 Contribution of this Research (Overview)

The achievement of this work has been the observation of enhanced, non-classical

mobility in field conditions similar to a Hall thruster where wall effects and plasma

fluctuations, the two most cited contributors to anomalous mobility, were absent.

Since collective effects and wall effects were not pertinent, investigating the mobility

in this environment achieved three purposes. First, it was possible to isolate any

effects not linked to fluctuation-induced mobility (much like the insight achieved by

Dubin and O’Neil in like-particle transport[35, 36]; see Section 3.4) based on geom-

etry or static field conditions. For example, it was possible to observe the effects

of non-orthogonal E and B-fields at the edges of the channel annulus, where in a

Hall thruster discharge these field conditions at the channel periphery are so inter-

nally coupled to the plasma environment that investigating this effect alone would

be impossible. Second, the anomalous mobility was examined in direct response to

external parameters, which allowed for the assessment of mobility trends with E, B

and background pressure (neutral density). Finally, external fluctuations that arise

out of noise in electrical circuitry were measured and controlled and effects of these

fluctuations were documented. These observations suggested yet another transport

mechanism that had not previously been isolated or observed that enhances mobility

in the geometry specific to a Hall thruster.

1.5 Organization

The organization of this document is presented so that the reader is aware of the

specific goal and purpose of each part of this dissertation. Chapter 2 begins with an
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extensive background of charged particle motion in electric and magnetic fields and

particle transport, both classical and "anomalous." These concepts are applied to the

fields and geometry of a Hall thruster to describe the s transport in the Hall thruster.

Chapter 3 presents the history of Hall thruster research, specifically in electron trans-

port, and presents the current initiatives in electron mobility research. A critical

review is presented to outline the present state of the field, point to gaps in scien-

tific knowledge, and to present the general strategies being implemented in electron

transport research. The aim and scope of this investigation are presented in more

detail to show the contribution of this dissertation to the field as a whole. Chapters

4 and 5 present the details of the Hall Electron Mobility Gage, that was designed to

meet the needs outlined in Section 1.3, namely the recreation of "anomalous" mobil-

ity in a highly-controlled environment free from the coupling effects that complicate

mobility research. Chapter 4 includes the physical design and construction includ-

ing physical structure and field design, and justification for the design decisions are

provided. Chapter 5 presents an extensive analytical characterization of the plasma

environment of the Hall Electron Mobility Gage for comparison with the Hall thruster

discharge plasma. This characterization is done to determine the extent of applica-

bility for the results of the Hall Electron Mobility Gage mobility studies. An analysis

of the characteristic electron dynamics within the Hall Electron Mobility Gage is

also presented in Chapter 5. Chapter 6 presents the experimental setup for the Hall

Electron Mobility Gage including diagnostic techniques and test methods. Chapter

6 also presents the tests and results for the verification of the design and diagnostic

techniques, to demonstrate the validity of the experimental methods. The results of

mobility experiments are presented in Chapter 7 showing mobility versus the control

parameters of electric field, magnetic field and pressure. Several additional mobility

investigations are presented in Chapter 7, which provide insight into the mechanisms

which may cause enhanced mobility and additional analysis is presented that provides

support for the existence of a collisionless mechanism for electron transport. Through
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various means, the material presented in Chapter 7 provides evidence of non-classical

mobility in the Hall Electron Mobility Gage and also identifies certain mechanisms

that have been eliminated as possible contributors to mobility. Chapter 8 provides

concluding remarks and suggestions for future work. The appendices include supple-

mental material including a statistical error analysis, effectiveness of calibration and

tuning procedures and further investigation of the diagnostic techniques.

12



Chapter 2

Charged Particle Transport

The purpose of this chapter is to gather the relevant concepts in charged particle

transport, which are used and referenced throughout the remainder of this disserta-

tion. Section 2.1 provides the background for single-particle motion in electric and

magnetic fields and expands to include the collective description of a plasma which

describes plasma behavior in a macroscopic sense. Section 2.2 covers classical col-

lisional transport, which describes the effect of particle collisions on net transport.

This section lays the groundwork for transport from first principles, which are used in

subsequent sections when describing anomalous transport using the same principles.

Secton 2.3 addresses collisionless or "anomalous" transport with a focus on Bohm

diffusion and mobility, which was the first derived and most commonly referenced

description of anomalous transport. These concepts are summarized here and the

reader is referred to an extensive bibliography of plasma physics texts and technical

journals for more rigorous derivations and important benchmarks in plasma transport

theory.
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2.1 Fundamental Plasma Concepts

2.1.1 Single Particle Motion

Single particle dynamics create the foundation of plasma physics and are necessary

to describe the plasma behavior in the Hall Electron Mobility Gage. The particle

dynamics in electric and magnetic fields are presented in this section including relevant

particle drifts and the magnetic mirror. The particle drifts are used to describe the

bulk motion of the plasma due to the electric and magnetic field structure. The

magnetic mirror is an important concept for the electron dynamics in the discharge

channel of a Hall thruster[37] and in the radial confinement in the Hall Electron

Mobility Gage, which will be revisited in Section 5.3.1.

The fundamental nature of plasmas is captured in the Lorentz equation. The

Lorentz equation is given by

m
dv

dt
= q(E + v × B) (2.1)

which defines the trajectory of a charged particle in response to electric and magnetic

fields. It is well known that a charged particle in a magnetic field gyrates in a circular

orbit perpendicular to the magnetic field. This characteristic motion is derived from

the Lorentz equation[38] and is defined by the frequency and radius of gyration:

ωce ≡ qB

m
rL ≡ mv⊥

qB
(2.2)

which is generally referred to as the gyro- or Larmor frequency and radius. This

gyration occurs in a plane that is is perpendicular to the magnetic field; particle

velocities parallel to the magnetic field are unaffected by the field and particles move

along field lines with their thermal velocities, v‖.
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If fields are constant or the field conditions vary slowly in space and/or time

compared to the gyro-orbit of the particle, the guiding center drift equations[39, 40]

describe the velocity of the "guiding center" of the gyrating particle due to the field

conditions. The guiding center description[39] averages the motion over a gyro orbit

so that the equations of motion are greatly simplified, which has been proven to be a

useful tool for capturing the relevant dynamics of the net particle motion[40]. There

are several drifts that arise due to forces and field gradients and each is described in

the following section.

In the presence of an electric field perpendicular to the magnetic field the center

of the gyrating charged particle (i.e. the guiding center) experiences a drift over

many gyrations that is perpendicular to both E and B. This drift occurs because

the particle gains energy through half the gyration while the particle loses energy

through the successive half of the gyration due to the electric field. In the direction

of the electric field the net motion is zero because the velocity gain exactly equals

the velocity loss over a gyration; however, there is a velocity imbalance transverse to

the electric field as shown in Fig. 2.1 where during the half of the orbit the particle

is moving faster (to the right) and the other half of the orbit the particle is moving

slower (to the left), resulting in a non-zero net transverse velocity. As an example,

the electric field is defined to be in the z-direction, perpendicular to a magnetic field

defined in the x-direction (Fig. 2.1). In this case the net particle drift is in the y-

direction. This drift motion is derived from the Lorentz equation[38] where the net

drift velocity over many gyrations is given to be

vE×B =
Ez

Bx
ĵ

In the general case where the E and B fields are not exactly orthogonal the drift

velocity becomes:

vE×B =
E × B

B2
(2.3)
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Figure 2.1: E × B drift for an ion trajectory and electron trajectory (not
to scale).

The E × B drift has no dependence on the particle charge, q, meaning particles of

both positive and negative charges drift in the same direction, provided they are both

"magnetized" (see Section 2.2.2). The dependence on q is absent because the particles

gyrate in opposite directions but also gain and lose energy in opposite directions; thus,

for ions the upper half of the orbit (in Fig. 2.1) the particle is moving faster (to the

right) and for electrons the lower half of the orbit the particle is moving faster (also

to the right). A similar drift appears for electrons and ions in the presence of any

force orthogonal to the magnetic field; however, if that force is not dependent on the

charge, q, (such as gravity) the resulting drift for electrons and ions will be in opposite

directions. In this case the particle drift is given by:

vf =
1

q

F× B

B2
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If a magnetic field gradient exists perpendicular to b̂, where b̂ = B/B is a unit vector

in the direction of the magnetic field, a drift arises out of the non-constant gyro-orbit

due to the spatial variation in B. This is called the ∇B (grad-B) drift where the

magnetic field is stronger during half the orbit leading to a smaller Larmor radius

and the field is weaker during the successive half of the orbit leading to a larger

Larmor radius resulting in a net transverse velocity perpendicular to the magnetic

field and the gradient. This drift is given by

v∇B =
1

2
v⊥rL

B ×∇B
B2

(2.4)

Because the field varies spatially, the size of the Larmor radius is important, as this

governs the net change in position over a Larmor gyration that gives rise to the drift

velocity. Thus, the drift is not independent of species.

If there is a gradient of B in the direction of b̂ a "magnetic mirror force" exists

that causes particles to move away from the stronger magnetic field to the weaker

field. This magnetic mirror force exists due to the adiabatic invariant, the magnetic

moment given by

µmag ≡ mv2
⊥

2B
(2.5)

The magnetic moment must be constant, so as a particle moves by thermal motion

into a region of stronger B-field, v⊥ must also increase. If v⊥ increases, in order for

the total energy of the particle to be conserved, v‖ must decrease. At some point,

if the field gets strong enough, v‖ eventually goes to zero, causing the particle to be

reflected back into a region of lower B. This force acts in the direction of the magnetic

field and is given by

F‖ = −µ∇(B · b̂)

where b̂ is the unit vector in the direction of the magnetic field. Magnetic mirrors

utilize this concept as a mechanism for confinement of charged particles where a
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"magnetic bottle" is created through an axial magnetic field that has "pinched" ends,

as shown in Fig. 2.2. The magnetic mirror force is directly proportional to the

perpendicular energy of the charged particle (Eqn. (2.5)). Thus, the magnetic mirror

has the ability to confine charged particles with very high energies provided that some

suitable fraction of this energy is in the perpendicular direction. However, in the case

where there is no perpendicular energy (i.e. v⊥ = 0) there is no confining force on the

electron and an electron is lost, regardless of the total energy of the particle. It follows

that trapping in a magnetic mirror is dependent on the pitch angle of the velocity

vector with respect to the magnetic field rather than the total magnitude of the total

energy of the particle. Particles having v⊥/v|| greater than some critical value will

be trapped, while others will have sufficient parallel energy to overcome the ∇B and

escape the mirror. This ratio of velocities defines what is referred to as the loss cone.

If the velocity vector of a particle is represented in velocity space there exists a region

representing a range of velocity vectors, the mirror loss cone, where the particle is

no longer confined by the magnetic mirror (Fig. 2.3). If the velocity vector lies

within this region the particle is no longer confined by the magnetic mirror; however,

outside of this region, in confined velocity space the particle is confined regardless of

the magnitude of its velocity. The mirror loss cone is found using the combination of

the adiabatic invariant, µmag, with conservation of energy, where

µ0,mag =
mv2

0⊥

2B0
=

mv′2⊥
2B′

(2.6)

and
mv2

0

2
=

mv′2⊥
2

(2.7)

In Eq. 2.7 (conservation of energy equation) v0 is the velocity of the particle at

the mid-plane of the mirror (minimum magnetic field) and v′ is the velocity of the

particle at its turning point. At the turning point v‖ = 0 so all of its kinetic energy

is captured by v⊥, and the energy balance becomes v′2⊥ = v2
0. The resulting loss cone
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Figure 2.2: Charged particle trajectory in a magnetic mirror.

is described by
v2
0

v2
0⊥

= sin2 θm =
B0

Bm
=

1

Rm
(2.8)

where θm is the minimum pitch angle a charged particle can have and still be trapped,

Bm is the maximum magnetic field and Rm is defined as the mirror ratio.

Other drifts arise due to magnetic field curvature (curvature drift) and spatially-

varying and/or time-varying electric fields (non-uniform-E and polarization drift, re-

spectively). A derivation of these can be found in Chapter 2 of Ref. [38], among other

introductory plasma physics texts[41, 42]. In the field conditions of interest (i.e. Hall

thrusters and the Hall Electron Mobility Gage) the ∇B drift and other drifts are

much smaller than the E×B drift[43] and will be, for the most part, neglected in this

dissertation. As previously stated, the above drift equations rely on the assumption

that fields vary slowly compared to the Larmor gyration so that the net effect aver-

aged over a particle gyration can be determined and the particle motion is represented
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Figure 2.3: Magnetic mirror loss cone in velocity space.

by these equations describing the motion of the guiding center. If this condition is

not met, the guiding center model no longer holds and the particle trajectory must

be determined directly by the Lorentz equation.

2.1.2 Collective Description

Single particle dynamics have been considered, thus far, in externally applied fields,

but the compelling dynamics of a plasma are realized when considering the interac-

tion of many particles. Since each particle creates its own field and interacts with

all other particles, the many-body collection of particles quickly becomes compli-

cated when tracing each individual particle and its interaction with all other particles

through self-consistent magnetic and electric fields. Luckily, certain behaviors have

been characterized through collective descriptions (fluid or kinetic) so that individual
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particle trajectories may be replaced by a macroscopic description that captures the

relevant plasma dynamics. This section explains the parameters that are used to

describe plasma behavior in a macroscopic sense and also defines the limits of such

a collective description. Rather than a rigorous derivation of the parameters, more

emphasis is placed on the physical significance and qualitative description of each,

and the reader is directed to plasma physics texts and technical papers for a more

exhaustive mathematical description.

Plasmas naturally tend to quasi-neutrality, where the density of positive and

negative charges are roughly equal due to the strength of the Coulomb forces be-

tween particles combined with good conductivity resulting in rapid equalization of

any charge disturbance. In a plasma, a charge perturbation (the presence of a charge

concentration, for example) causes other particles in the plasma to arrange themselves

in order to offset the perturbation as they are attracted or repelled from the charge

concentration due to the Coulomb interaction. However, because the particles have

thermal energy they may overcome the Coulomb potential to form a "cloud" around

the charge perturbation with size and density according to the energy distribution of

the particles. The Debye length is given as a measure to quantify this type of plasma

behavior conceptually representing the balance of thermal energy (opposes shielding)

to potential energy (fosters shielding). Quantitatively, the Debye length arises out

of the solution to the Poisson equation where the density is given as a Maxwellian

distribution in the presence of a potential. The Debye length is specifically defined

as the point that the potential is shielded to 1/e of the perturbation potential due to

the charge concentration. Mathematically this is given as

φ = φ0 exp

(

−|x|
λD

)

(2.9)
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where the full Debye length in a quasi-neutral plasma is given by

λD =

√

ǫ0k/q2

ne/Te +
∑

ij j
2nij/Ti

=

√

ǫ0kTe

neq2
(2.10)

Various derivations of this quantity can be found in Refs. [38, 41, 42]. The approxi-

mation on the right hand side is made that the electron temperature is much higher

than the ion temperature (Te ≫ Ti), so that the ions can be neglected. (Equivalently,

this approximation represents the fact that ions respond much more slowly to electric

fields and are assumed to be infinitely massive compared to electrons, so electrons

move through a grid of ions.) Because of the tendency of charges to equalize the

fields, the approximation can be made that in a plasma several Debye lengths in size,

the ion density is approximately equal to the electron density (i.e. ne ∼ ni ∼ n),

which by definition is the quasi-neutral assumption. Alternatively, for lengths shorter

than the Debye length, charge imbalances which violate quasi-neutrality are possible

due to the thermal energy opposing the Coulomb forces. This separation of collective

and thermal phenomena at the physical scale of the Debye length will be explored

in more rigorous detail in Section 2.1.3 with respect to the collective description of

plasma oscillations.

The fluid description of a plasma replaces the individual particles with fluid ele-

ments that are described by macroscopic properties such as density and temperature.

The fluid description is used as a tool to describe plasma behavior in the macroscopic

sense and the two most important equations, the fluid equation of motion and the

continuity equation, are briefly presented here as they will be utilized in both the

description of oscillations and in transport theory. The fluid equation of motion is

given by

mjnj

[

dvj

dt
+ (vj · ∇)vj

]

= qjnj(E + vj ×B) −∇pj −mnνvj (2.11)
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where ∇p is the pressure term and mnνvj is the collision term, and j corresponds

to the species, ions or electrons, where a separate equation is used for each (two-

fluid description). The fluid equation of motion represents that of the Lorentz force

equation, but two terms are added on the right hand side to account for effects arising

out of the collection of particles, the pressure term arising out of density gradients

and the collision term arising out of momentum exchanges with neutral gas. Also,

the convective derivative (dvj/dt+ vj · ∇vj) arises out of the transformation from a

particle reference frame (moves with particles) to the fluid element reference frame

(fixed in space). The velocity is assumed to be a Maxwellian distribution, where

this assumption is implicit in the pressure term; however, the fluid equation is often

relatively insensitive to the actual velocity distribution as only the average velocity

is important (which is described by the temperature in the pressure term)[38].

The continuity equation states that the number of particles in a volume element

are conserved and is given by

∂nj

∂t
+ ∇ · (njvj) = 0 (2.12)

In the fluid description, the pressure term arising out of density gradients leads

to a drift that only is present within fluid description, even though the particles

themselves do not drift. This drift arises because the density gradient causes more

particles to be moving downward than upward due to the direction of gyration. This

is given by

vD = −∇p× B

qnB2
(2.13)

Another variation in the fluid description is the elimination of the ∇B drift. Since

the magnetic component of the Lorenz force cannot add energy to the particles,

the presence of the magnetic field cannot change the momentum. A fluid with a

Maxwellian distribution of particle velocities will still be Maxwellian in the presence

of a magnetic field and the flux of particles through the fluid elements will be constant.
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The curvature and the E × B drifts are unchanged in the fluid description.

The full set of fluid equations include Eqs. (2.11) and (2.12), Maxwell’s equa-

tions in vacuum, the equation of state relating pressure and density, and the Poisson

equation∗. Together these equations give a self-consistent description of the plasma

dynamics and fields. (A derivation of the fluid equation can be found in Chapter 7 of

Ref. [38] and a description of the full set of fluid equations can be found in Chapter 3 of

Ref. [38].) The fluid description requires several assumptions to "close" the equations,

such as an assumption of temperature and velocity/energy distribution, collisions, and

viscosity (neglected in Chen’s fluid description[38]). The fluid description becomes

inadequate in certain cases where the dynamics of the particles depends strongly on

the particle energy and/or velocity such as in magnetic mirror geometries[44, 45], or

in the growth and propagation of various plasma instabilities[46, 47].

The kinetic description contains one less assumption than the fluid description,

as the kinetic description includes the velocity distribution, instead of assuming a

Maxwellian distribution (or some other distribution with average velocity, v̄e), as

is done in the fluid description. The discussion of distributions will be revisited in

Section 5.3.2, and several descriptions of velocity and energy distributions can be

found in Ref. [48]. The fundamental equation of motion (Boltzmann equation) for

the kinetic description of a plasma is given by

∂f

∂t
+ v · ∇f +

q

m
(E + v × B) · ∂f

∂v
=

(

∂f

∂t

)

c

(2.14)

where (∂f/∂t)c represents the change in the distribution function due to collisions.

If collisions are neglected, this reduces to the Vlasov equation, where the right-hand-

side of Eq. (2.14) is taken to be zero. The effects of collisions on the distribution

function depend on the interacting species and nature of collisions, which has been

∗The "plasma approximation" is often used in place of the Poisson equation where ni = ne is
used as a mathematical shortcut. A good discussion of this point is presented in Section 3.6 of Ref.
[38].
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the subject of numerous experimental, numerical, and theoretical investigations[49].

If the collision term cannot be neglected, the collision term is often represented by one

of two models: the BGK model[50] or the Fokker-Planck model([51] and p. 31 of Ref.

[52]). In general, the BGK model assumes that each collision results in a trajectory

that (immediately) populates a Maxwellian distribution. The Fokker-Planck model

represents small momentum changes leading to the population of the Maxwellian (or

other "final" distribution) that corresponds to a "random walk" in velocity space. In

plasma physics the BGK model is generally used to describe the changes in the velocity

distribution function when there is a large momentum transfer in collisions such as

in electron-neutral collisions, whereas the Fokker-Planck model is often used where

there are small momentum changes, such as in Coulomb collisions, which produce

small-angle deflections. Collisions are addressed more fully in Section 2.2.3. The

BGK model is presented in more detail in Section 5.3.2, in the derivation of radial

confinement time and radial losses due to electron-neutral collisions within the Hall

Electron Mobility Gage. A great description and rigorous derivation of the kinetic

and two-fluid descriptions, including all assumptions and commentary/guidelines for

the use of several approximations, may be found in Chapter 5 of Ref. [53].

2.1.3 Plasma Oscillations

Plasma oscillations have been hypothesized to be responsible for cross-field electron

transport in a Hall thruster[54, 25, 55], as well as several other plasma devices[56].

Fluctuation-induced transport is discussed in more detail in Section 3.3.3, where this

section provides an introduction to plasma oscillations with regard to their origin and

ability to be sustained. A fundamental condition of plasma oscillations is presented

demonstrating that oscillations may be sustained on length scales large compared to

the Debye length but are damped out by the thermal motion of particles on length

scales shorter than the Debye length. This fact is imperative in the neglect of plasma
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oscillations in the Hall Electron Mobility Gage which will be discussed in Section 5.2.

It is well known that plasmas may support macroscopic collective behavior such

as plasma oscillations and transmission of waves. In this section a description of

plasma oscillations is derived from the electron fluid equation, adapted from Chen[38],

neglecting thermal motion, in order to establish the basics of collective oscillations

including a derivation of the well-known plasma frequency. Then a more generalized

description, adapted from Pines and Bohm[57], is presented, based on the microscopic,

single-particle description, that takes into account thermal motion as well as the

collective effects. As described conceptually in Section 2.1.2, the Coulomb forces

act to enhance collective behavior, whereas the random thermal motion opposes this

behavior. Here it is shown that the Debye length provides the division between

collective and thermal effects, where on length scales large compared to the Debye

length, Coulomb forces predominate the motion, and on length scales small compared

to the Debye length, the plasma behavior is governed by the random thermal motion

and disturbances tend to die out instead of being sustained as oscillations.

Plasma oscillations arise out of disturbances in the plasma density. If electrons

are displaced from their equilibrium positions (ions are assumed to be an infinitely

massive, uniform background grid) the increased local electron density drives electrons

back to the area deficient in electrons. However, because of the electron inertia,

they overshoot their original position and continue to oscillate about this equilibrium

position, as ions, due to their large mass, do not have time to respond; the frequency

of this oscillation (electron plasma frequency) is constant and depends only on the

electron density. Here, the expression for plasma frequency is found in a simplified case

where thermal motion and collisions are neglected and only electrostatic oscillations

are present (neglecting the magnetic field). To describe the plasma motion the fluid

equations of motion and continuity are used. The Poisson equation may be used in

the case of plasma oscillations as the time varying fields arise due to the violation

of quasi-neutrality and are fast enough that ions do not have time to neutralize the
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charge separation. The electron fluid equations of motion and continuity and Poisson

equation under these approximations reduce to

mne

[

∂ve

∂t
+ (ve · ∇)v

]

= qneE (2.15)

∂ne

∂t
+ ∇ · (neve) = 0 (2.16)

ǫ0∇ · E = −q(ni − ne) (2.17)

Here the fluid equation of motion (Eq. (2.11)) is modified to reflect the assumptions

of collisionless (νcoll = 0), electrostatic (B = 0) and cold (kT = 0), so the pressure,

collision, and v × B force terms vanish. The quantities E, ne and v are all assumed

to have constant equilibrium quantities with superimposed sinusoidal, time-varying

perturbations of constant frequency (e.g. ne = n0 + n1 exp(i(kx − ωt)) and likewise

for E and v). Amplitudes of n1, E1 and v1 are taken to be complex to capture any

differences in phase between the oscillating quantities. It is also assumed that the

equilibrium condition is a neutral plasma at rest, so there is no equilibrium electric

field, no spatial gradient in the equilibrium density, and zero equilibrium velocity. The

ion density is assumed to be constant and equal to the equilibrium electron density,

which then both vanish in the Poisson equation. The final assumption is that the

velocity is small enough that only linear terms are retained and higher order terms

are neglected (i.e. v · ∇v = 0, n1v1 = 0). With all of these assumptions the three

equations (Eqs. (2.15)-(2.17)) above are reduced to†

m

[

∂v1

∂t

]

= qE

∂n1

∂t
+ ∇ · (n0v1) = 0

ǫ0∇ · E = −qn1

†For simplification in notation the time varying components are represented by an abbreviated
notation, where n1 = n1 exp(i(kx − ωt)), etc.
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Taking the time and spatial derivatives gives the three equations in expanded form:

−imωv1e
i(kx−ωt) = qE1e

i(kx−ωt)

−iωn1e
i(kx−ωt) + n0ikv1e

i(kx−ωt) = 0

−ikǫ0E1e
i(kx−ωt) = −qn1e

i(kx−ωt)

Using these three equations and three unknown time-varying quantities (n1, v1 and

E1) an expression can be given in terms of the velocity

−imωv1e
i(kx−ωt) = −in0q

2

ǫ0ω
v1e

i(kx−ωt)

The non-trivial solution gives

ωP =

(

n0q
2

ǫ0m

)1/2

(2.18)

which is the plasma frequency.

The derivation above makes a gross simplification in neglecting thermal motion

and thus the plasma behavior is described by perfectly organized oscillations that

occur at the plasma frequency. Pines and Bohm present a microscopic-kinetic solution

that does not neglect the thermal motion and also does not make any assumption a

priori on the oscillatory behavior of the time varying quantities (e.g. no assumption

of sinusoidal or constant frequency oscillations, as in Chen’s description). In principle

the derivation by Pines and Bohm is similar to Chen’s description in that the time

varying plasma behavior is described by fluctuations in plasma density. Since density

can be described as a function of position, the first and second time derivatives

of plasma density, which are presented by Pines and Bohm, contain velocity and

acceleration terms. The acceleration term is described by the equation of motion

due to the Coulomb forces and thus encompasses only the inter-particle interactions,
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yet the velocity term additionally contains the random thermal motion, which would

be present even in absence of Coulomb interaction between particles. Pines and

Bohm describe all parameters in terms of their Fourier components, which allow for

fluctuations of all frequencies and wavelengths, some of which are collective (such as

the collective oscillation at the plasma frequency) and some of which arise out of the

random motion of the particles that have no frequency or phase relations. Therefore,

the microscopic-kinetic description by Pines and Bohm contains both the collective

effects contributing to organized oscillations as well as the thermal effects that act to

oppose the collective effects. The details of this derivation are described as follows.

Pines and Bohm start with the interaction of point particles to describe the

equation of motion for a particle in response to all other particles (deriving from the

potential energy of interaction between the ith and jth electrons).

dvi

dt
= −

(

4πq2i

m

)

∑

ij

k

k2
eik(xi−xj) (2.19)

This is then extended to the collective description by giving the equation of motion

of a single particle as it interacts with a density of particles rather than a sum of

discreet particles. The density in terms of Fourier components is given as

ρk =
∑

i

eik·xi (2.20)

so the equation of motion then becomes

dvi

dt
= −

(

4πq2i

m

)

∑

k

k

k2
ρke

ik·xi. (2.21)

The first and second time derivatives of density are then given as

dρk

dt
= −i

∑

i

(k · v) eik·xi. (2.22)
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Substituting the equation of motion into the second derivative results in

d2ρk

dt2
= −

∑

i

(k · vi)
2 eik·xi −

∑

k′ij k′ 6=0

(

4πq2

mk′2

)

k · k′ei(k′−k)·xj . (2.23)

The second summation in the equation above can be simplified by separating it into

two parts k = k′ and k 6= k′. For k = k′ the first exponential in the second

term vanishes, removing the dependence on xi so the sum over i is just the number

of particles, n0. For k 6= k′ Pines and Bohm show that the phases expressed in

exp(i(k′ − k) · xi), which depend on random particle position, cause these terms to

average out to zero. Equation (2.23) then becomes

d2ρk

dt2
= −

∑

i

(k · vi)
2 e−ik·xi −

(

4πn0q
2

m

)

∑

i

e−ik′·xi (2.24)

The first term in Eq. (2.24) includes the contribution to the plasma density fluctua-

tions due to random thermal velocities, whereas the second term comes from only the

particle interactions through Coulomb forces. It can be seen here that for sufficiently

long wavelengths or for sufficiently small thermal velocities (kv → 0), Eq. (2.24)

reduces to the second order differential equation:

d2ρk

dt2
+

(

4πn0q
2

m

)

ρk = 0 (2.25)

The solution to the differential equation is an oscillation at the plasma frequency

ωP =

(

4πn0q
2

m

)1/2

(2.26)

Therefore, Eq. (2.24) gives the same result as the simplified description above

when thermal velocity is neglected, where the particle densities exhibit perfectly or-

ganized oscillations at the plasma frequency. If kv is large however, and can not be

neglected, the density oscillations are governed by the first term of Eq. (2.24). Here
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the frequency of oscillation is given by ω = kv which varies for all particles. There-

fore, if even at a given point in time the phases of such oscillations were correlated

they would quickly become disorganized by the random frequencies arising out of the

thermal velocity. Equation (2.24) then represents the balance of collective behavior

given by the Coulomb interaction and the randomizing behavior given by the thermal

motion that acts to oppose the organized behavior. A comparison between these two

terms gives rise to the relative contribution of each of these effects. Mathematically

this is represented by the inequality

(

4πn0q
2

m

)1/2

≫
〈

(k · v)2〉 (2.27)

where satisfying the inequality of Eq. (2.27) represents the case where collective effects

may be sustained by the plasma. Rearranged, assuming an isotropic Maxwellian

distribution with temperature T , this gives

k ≪
(

12πn0q
2

m 〈v2
i 〉

)1/2

= λ−1
D (2.28)

Interestingly, this gives a separation of phenomenon at the Debye length. For scales

much longer than the Debye length (k ≪ λ−1
D ) collective effects dominate the particle

motion and organized oscillations can be sustained. However, for scales much smaller

than the Debye length, the random thermal motion opposes the collective behav-

ior, which tends to randomize disturbances so that collective oscillations cannot be

supported.

2.1.4 Non-neutral Plasmas

The formation of a plasma through creating electron-ion pairs, combined with good

conductivity, ensures that the plasma be quasi-neutral in most cases. The total

charge of the plasma body is zero, as equal densities of positive and negative charges
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are available for neutrality and rapid electron motion acts to equalize any charge

separation. However, if only like-charged particles are introduced into the system

from an external source or a charge species is removed from the system, and the

plasma is confined by electric and/or magnetic fields, the plasma may violate quasi-

neutrality. (Without confinement the self-field of a non-neutral plasma would cause all

of the particles to repel each other eliminating the plasma.) An analogous derivation

of Debye length and plasma frequency can be made for non-neutral plasmas where the

charge perturbation is a perturbation against the "background" self-field (instead of

zero-field as in quasi-neutral plasmas). Outside of the Debye sphere the background

self-field of the non-neutral plasma is unaffected by the charge perturbation. This

is similar to the quasi-neutral case where the field is regarded as zero outside the

Debye sphere surrounding a charge perturbation. This derivation can be found in

Davidson[58] and results in the exact same formulation as Eq. (2.10). For purposes

of clarification, a one-component plasma refers to a plasma strictly containing only

one species whereas the designation of a non-neutral plasma only indicates that there

is a violation of charge neutrality in the bulk plasma but may contain both positive

and negative species. While most of the equations describing quasi-neutral plasma

behavior are unchanged with regard to non-neutral plasmas, one assumption generally

made in the fluid description, is obviously not valid. This is the plasma approximation

where the Poisson equation is generally replaced by ni = ne. In a non-neutral plasma

strong self-fields exist due to the collection of charges, where the Poisson equation

must be solved explicitly.

2.2 Classical Diffusion and Mobility

Neglecting particle interactions, charged particles follow the trajectories described

by the Lorentz equation (Eq. (2.1)) in the presence of magnetic and electric fields.

However, momentum changes arise from collisions with other particles, which must
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be accounted for when describing the bulk motion of the plasma. Diffusion and

mobility in plasmas describe the effects of collisions on the transport phenomena of

charged particles, where this is defined as the classical description for charged particle

transport. The distinction between diffusion and mobility lies in the mechanism

driving transport, where diffusion is defined by a net flux due to a density gradient,

and mobility is defined by a net flux due to an electric field or equivalently electric

potential gradient. This dissertation is concerned with mobility rather than diffusion,

because electric potential gradients are much more significant than density gradients

in the plasmas motivating this research (namely, Hall thrusters). Therefore, the focus

in subsequent sections will be on mobility; however, the derivations for both mobility

and diffusion will be made here as both come from the fluid equation of motion.

2.2.1 Free Diffusion and Mobility

Free diffusion and mobility are concerned with transport phenomena in the case of

zero magnetic field. The following sections present the fundamentals of diffusion and

mobility in this context, where the same principles will then be applied to the case

where a magnetic field is present. These principles are even used loosely to describe

certain types of anomalous mobility, as will be presented in Section 2.3. The building

blocks of diffusion and mobility lie in the definitions that follow in presenting the

most simplified illustration.

The mean free path of a particle traveling through a medium of "target" particles

is given by

λm =
1

n0σcoll.
(2.29)

where n0 is the density of "target" particles and sigma is the collision cross-section,

which is essentially a probability of collision, expressed in terms of area (m2), for given

input parameters of incident energy and target species. (A derivation of the mean

free path can be found in Chen, Ref. [38].) For the purposes of this analysis, the
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collision cross-section, σcoll., (discussed in more detail in Section 2.2.3) is assumed to

be constant. If particles are traveling with a certain velocity, the mean time between

collisions is given by the distance traveled (λm) divided by the average particle speed:

τcoll. =
λm

v̄
(2.30)

This corresponds to a collision frequency of

νcoll. = n0σcoll.v̄ (2.31)

The diffusion and mobility coefficients come from the fluid equation of motion (Eq.

(2.11)), where, in order to simplify, it is assumed[38] that the collision frequency is

large enough that dv/dt is neglected and the left hand side of the fluid equation can

be taken to be zero. Then solving for the velocity gives

v =
q

mν
E− kT

mν

∇n
n

(2.32)

Equation (2.32) shows how the velocity of the fluid is related to the electric potential

and density gradients. The diffusion and mobility coefficients are then defined by the

constants of proportionality in the relation of velocity to the electric field and density

gradient:

µ ≡ q

mν
(2.33)

D ≡ kT

mν
(2.34)

The diffusion coefficient is in units of m2/s and mobility coefficient is in units of

m2/(V-s). The units of variance in distance (m2) per time for both mobility and

diffusion are notable, and will be discussed below.

Diffusion mathematically represents the linear growth in time of the position vari-
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ance of a group of particles, with the constant of proportionality between variance

and time being defined by the diffusion constant, σ2 = Dt‡. This relation is made

obvious by the units of the diffusion constant, m2/s. Diffusion can be investigated

by considering a mathematically equivalent description using a discrete random-walk

process. In a random-walk process, particles are assumed to have straight-line tra-

jectories between collisions, where the particle moves a distance given by the mean

free path and the direction of the trajectory after the collision is given to be random,

with collisions taking place on a time scale determined by the collision frequency.

Einstein’s 1905 paper on Brownian motion[60] showed the mathematical equivalence

between the discrete random walk and continuous diffusion, providing the link be-

tween microscopic motion (random walk) and macroscopic observables (diffusion),

which actually gave credence to the existence of atoms as discrete particles rather

than a continuous medium. Through this examination of the microscopic motion,

it becomes much easier to examine the diffusion and mobility processes from first

principles, especially when the fluid equation may not capture the dynamics of the

mechanism driving transport, as in anomalous mobility.

The diffusion constant can be represented in the following form based on the

random-walk process[59]

D =

〈

(∆x (t))2〉− 〈∆x (t)〉2

ndimt
=

δ2

τ
(2.35)

where ∆x is the displacement of a particle after time t, δ is the average distance a

particle travels between collisions in the random walk (in terms of free diffusion, this

is equivalent to the mean free path given by Eq.(2.29)), τ is the mean time between

collisions (which is the inverse of the collision frequency τ = 1/ν), and ndim is the

number of spatial dimensions.

‡In some texts, such as Ref. [59], the diffusion constant is defined as σ2 = 2Dt to make Fick’s
equations more "tidy". A discussion of this is found in Chapter 2 of Ref. [59]. Here the factor of
2 is dropped in order to maintain consistency with the diffusion and mobility constants defined in
Eq. (2.33) and Eq. (2.34).
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To show equivalence of the random walk with the fluid description of diffusion and

mobility (Eqs. 2.33 and 2.34), the diffusion and mobility coefficients are determined

for the case of a Maxwellian distribution (assumed in the fluid description) using the

random walk description, as shown below. The square of the mean step size can be

found from the expected value of the speed squared, 〈v2〉,

δ2 =
〈

(vτ)2〉 =
〈

v2
〉

τ 2 (2.36)

and the average square speed is given by the Maxwellian distribution where

〈

v2
〉

= 4π

(

β

π

)3/2 ∫ ∞

0

v2e−βv2

dv =
kT

m
(2.37)

Therefore the diffusion constant is given by

D =
〈

v2
〉

τ =
kT

m
τ =

kT

mν
(2.38)

The mobility coefficient arises from a persistent directional bias to normal thermal

diffusion due to the presence of an external force. In terms of the random walk, a

particle is scattered isotropically in a collision so the average initial velocity and

displacement after a collision due to the random thermal motion is zero. However, in

the presence of a force, the particle is accelerated for an amount of time, τ , between

collisions, displacing the particle by

∆x =
aτ 2

2
=

Fτ 2

2m
(2.39)

always in the direction of the force. Therefore, the average drift velocity is given by

vd =
Fτ

m
(2.40)
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This drift velocity, obtained by simple methods, is the same drift velocity that

would be achieved by deriving the average velocity of a distribution of particles un-

dergoing a random walk with a bias (i.e. 〈∆x〉2 6= 0) using Eq. (2.35). The reader

is referred to Ref. [59] for the complete derivation and more extensive discussion.

This drift velocity may be used to relate mobility and diffusion which results in the

Einstein relation (sometimes referred to as the Einstein-Smoluchowski relation). To

derive the Einstein relation from Eq. (2.40), the numerator and denominator are

multiplied by D, and substituting D = kT/mν in the denominator results in the

relation

vd =
FD

kT
(2.41)

To apply this to mobility of charged particles in an electric field where vd = µE

and F = qE the relation becomes

µ =
qD

kT
(2.42)

which is the same functional relation between Eq. (2.33) and Eq. (2.34). The

main purpose of presenting the concept of the random walk is to show that the

diffusion and mobility coefficients can be defined explicitly under any conditions where

the average step length and time between steps (collisions) is known. The random-

walk description can be used to define the diffusion and mobility coefficients in the

case of magnetized and fluctuation-induced transport, as will be shown in Sections

2.2.2 and 2.3, respectively.

2.2.2 Magnetized Diffusion and Mobility

The application of a magnetic field reduces the transport in the direction perpendic-

ular to the applied field as the v×B force prohibits particles from streaming freely in

this direction and holds particles in Larmor gyrations. A particle is said to be magne-
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tized if there are many Larmor gyrations between momentum-transfer collisions and

unmagnetized if the particle undergoes several collisions in a single gyration. This is

quantified by the Hall parameter where

ΩH =
ωce

νm
= ωceτm (2.43)

The magnitude of the Hall parameter is an indication of the degree of magnetization

where the plasma is said to be magnetized if ΩH ≫ 1 and unmagnetized if ΩH ≪ 1.

Analytically, the diffusion and mobility in the presence of a strong magnetic field is

derived from the fluid equation of motion in a way analogous to the derivation for free

diffusion. The derivation presented here is adapted from that of Chen[38]. (Similar

derivations are found in Brown[61] among other introductory plasma physics texts.)

Starting with the fluid equation of motion again (Eq. (2.11)), defining the magnetic

field in the z-direction, and taking the left side of Eq(2.11) to be zero, the velocity in

the x- and y-directions§ is given by

vx =
qEx

mνm

− kT

mνm

∂n

∂x
+

qBz

mνm

vy (2.44)

vy =
qEy

mνm
− kT

mνm

∂n

∂y
+

qBz

mνm
vx (2.45)

Solving the simultaneous equations and substituting the free diffusion and mobility

coefficients from Eq. (2.33) and Eq. (2.34), respectively, results in the velocity

equations for the x- and y-components:

vx

(

1 + ω2
ceτ

2
m

)

= µEx −
D

n

∂n

∂x
− ω2

ceτ
2
m

Ey

Bz
+ ω2

ceτ
2
m

kT

qBz

1

n

∂n

∂y
(2.46)

vy

(

1 + ω2
ceτ

2
m

)

= µEy −
D

n

∂n

∂y
− ω2

ceτ
2
m

Ex

Bz
+ ω2

ceτ
2
m

kT

qBz

1

n

∂n

∂x
(2.47)

§The motion in the z-direction is unaffected by the magnetic field and transport along the mag-
netic field is described by free diffusion and mobility.
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Here the last two terms on the right-hand side arise out of the E×B and diamagnetic

drifts, respectively. The first two terms are the free diffusion and mobility terms,

however the equation for velocity is modified by the term (1 + ω2
ceτ

2
m), where ωceτm is

the Hall parameter defined by Eq. (2.43). The new diffusion and mobility coefficients

for motion perpendicular to the magnetic field are then given by

D⊥ =
D

1 + ω2
ceτ

2
m

(2.48)

µ⊥ =
µ

1 + ω2
ceτ

2
m

(2.49)

The result in the case of low Hall parameter approaches that of free diffusion and

mobility, and as the Hall parameter increases the perpendicular motion is increasingly

impeded by the magnetic field. Using these definitions for perpendicular diffusion and

mobility, the equation for the bulk cross-field velocity can be simplified to read

u⊥ = µ⊥E −D⊥
∇n
n

+
vE×B + vD

1 + ω2
ceτ

2
m

(2.50)

In the case of large Hall parameter the diffusion and mobility coefficients reduce to

D⊥ =
kTνm

mω2
ce

(2.51)

µ⊥ =
νm

ωceB
(2.52)

In the case of high Hall parameter the cross-field diffusion and mobility can be derived

using the concept of a random walk, similar to the derivation presented in Section 2.2.1

for free diffusion and mobility¶. Here the step size is taken to be the Larmor radius, as

particles gyrate around magnetic field lines and simply cannot free themselves unless

their trajectories are altered by a momentum-transfer collision. Thus the maximum

distance traveled between collisions is the Larmor radius, rL. Referring back to Eq.

¶The author is unaware of a similar derivation of random-walk transport in the case of magnetized
diffusion and mobility.
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(2.35) the diffusion constant is given as D = δ2/τ . The square step size is given to be

δ2 = (rL)2, where the Larmor radius is a function of the thermal velocity. The square

step size is then given by

δ2 =

(

m

qB

)2
〈

v2
〉

=
〈v2〉

(ωce)
2 (2.53)

By substitution, using Eq. (2.37) for 〈v2〉 the diffusion coefficient is represented by

D⊥ =
kT

mω2
ce

νm (2.54)

which is the same result as Eq. (2.51). The mobility can be derived from this using

the Einstein relation, but also can be derived by inspection of the drift velocity.

By the latter approach, the drift velocity given by Eq. (2.40) does not apply, as the

acceleration in the direction of the force no longer takes place for the time, τ , between

collisions but only until the particle is turned by the magnetic field. The drift velocity

must be obtained then by the displacement of the particle due to the force only until

it is turned by the magnetic field. This displacement is defined by the Larmor radius

where Eq. (2.39) is replaced by

∆x =
m 〈vE〉
qB

=
1

ωce

(

E

B

)

(2.55)

where 〈vE〉 is the average velocity in the direction of the electric field given by E/B,

assuming perfectly orthogonal E and B‖. The particle can only be displaced ∆x per

collision so the drift velocity represents how fast these "steps" are being taken, shown

by the relation

vd = ∆xνm =
νm

ωceB
E (2.56)

Thus the mobility becomes

µ⊥ =
νm

ωceB
(2.57)

‖The velocity in Eq. (2.55) does not include thermal motion since 〈vthermal〉 = 0.
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which again is the same result as Eq. (2.52). Comparing Eq. (2.54) and Eq. (2.57),

it is seen that the Einstein relation still holds for magnetized diffusion and mobility.

2.2.3 Classical Collision Species

In Sections 2.2.1 and 2.2.2, for the determination of collision frequency, the cross-

section for collision was taken to be constant and the meaning behind the cross-section

was not discussed in detail. Here the different types of collisions are explored and the

meaning and value of the cross-section for each type of collision is presented in greater

detail. The possible binary collisions for an electron are electron-neutral, electron-

electron and electron-ion collisions. Each of these has a different cross-section based

on the interaction between the species, which are discussed in detail below.

The electron-neutral collision process results in an electron scattering diffusively

(where the direction or the resulting velocity vector has no preferential direction) after

a collision with a neutral. The electron-neutral collision cross-section, σen, depends

on the neutral species and the relative velocity of the colliding particles. In this

description the neutrals are assumed to be stationary, as v̄e ≫ v̄n; if this is not the

case then the electron velocity in Eq. (2.31) is replaced by relative velocity between

the two species. Figure 2.4 shows the electron-neutral cross-section for argon as a

function of electron energy[3]. (Argon is presented here because it is the neutral gas

species used in the majority of the experiments discussed in the remainder of this

dissertation.) The momentum-transfer collision cross-section is found from empirical

data and shown as a solid line. Inelastic collisions are also found empirically, where

the first excitation and the first ionization cross-sections are shown in Fig. 2.4 as a

thin line and dashed line, respectively.

In a momentum-transfer collision the amount of energy that is transferred from

an electron to a neutral is proportional to the mass ratio me/Mn which for argon is

∼ 1×10−5. Therefore, momentum-transfer collisions are responsible for changing the
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Figure 2.4: Momentum-transfer, first excitation, and ionization collision
cross-sections for electron collisions with argon atoms.(Data obtained from
Ref. [3]

momentum of electrons colliding with neutrals (i.e. directional scattering) but many

momentum-transfer collisions are needed to cause any significant energy change to the

electron species. Therefore, the time for a significant energy change while undergoing

electron-neutral collisions is much longer than the time for significant direction change

(this point will become important in Sections 5.2.3 and 5.3.2). In an inelastic collision

however, the change in energy of an electron is appreciable and loses energy on the

order of the threshold energy for the inelastic collision. For argon the threshold energy

for the first excitation energy is 11.5 eV and for ionization is 15.8 eV.

A Coulomb collision refers to the interaction between two charged particles, rather

than a charged particle (electron) and a neutral. Here electron-electron collisions and

electron-ion collisions are both presented. When discussing electron-neutral collisions

a single interaction (collision) results in a significant amount of momentum change
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by a large-angle scattering event. A single Coulomb collision may also result in a

large-angle scattering event if the particles come sufficiently close to each other (this

distance is represented by b0 in Fig. 2.5) in the interaction, giving rise to a collision

cross-section given by σ = πb20. However, in contrast to collisions with neutrals, where

there is no interaction between the particles until their spacing is on the order of the

size of the particle, charged particles can interact with each other over a distance up

to the Debye length (where λD ≫ b0), where the long-range interactions result in

only a small deflection (Debye length is presented in Section 2.1.2, Eq. (2.10)). It has

been found that these small deflections significantly increase the effective cross-section

for Coulomb collisions so that σ > πb20, where the cumulative effect of these small

deflections becomes significant relative to the much less frequent large-angle Coulomb

collisions, which was first recognized by Spitzer[62]. Various derivations of the cross-

section for Coulomb collisions can be found in Spitzer, Helander[63], Goldston and

Rutherford[41], among others. The general form of the collision frequency (Eq. (2.31))

still holds but the variables take on a slightly different meaning. Rather than being

defined by a single collision, the collision frequency for Coulomb collisions represents

the sum of many collisions where the collision time, τee = 1/νee, is defined as the time

after which the sum of all small angle deflections equals one large-angle deflection,

often called the 90-degree scattering time.

The form of Eq. (2.31) is still used but the cross-section depends on more than the

target species and incident energy, rather it is an intrinsic property of the plasma itself

because of the dependence on the Debye length. The cross-section is derived from

equations of motion rather than being experimentally determined. The estimated

cross-section is inversely dependent on the relative velocity of the interacting species.

The cross-section falls off rapidly with increasing velocity as the particles spend less

time in the interaction and would be deflected only a small amount. The cross-section

increases with the Debye length as this represents the space over which particles can

interact. The dependence of the cross-section on the Debye length is described by the
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Figure 2.5: Impact parameter for Coulomb collisions.

Coulomb logarithm, which is given by ln Λ, where

ln Λ ≡ ln

(

bmax

bmin

)

= ln

(

λD2πǫ0mev̄
2
e

e2

)

(2.58)

As the Debye length increases, the space in which particles may influence each other

increases. However, also as the Debye length increases, the average deflection in

each interaction decreases because the average distance of interaction is consequently

larger. The physical meaning of the Coulomb logarithm comes from the balance

between the increase in interaction space as the Debye length increases (maximum

distance of interaction, λD) and the reduction of the deflection angle for the average

interaction as the Coulomb force decreases with distance. Because the force between

particles falls off rather slowly with distance, the Coulomb logarithm (and thus cross-

section) increases with increasing Debye length and thus the collision cross-section

increases with Debye length, but the increase is rather slow (logarithmic dependence)
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and the Coulomb logarithm varies only slightly across a large range of plasmas where

most laboratory plasmas have a Coulomb logarithm in the range of 10-20. In general,

the effect of the Coulomb interaction captured by the Coulomb logarithm serves to

increase the collision cross-section by an order of magnitude, which is often significant

in fully-ionized plasmas. The collision cross-section is represented as

σee ≈ e4 ln Λ

4πǫ20m
2
e v̄

4
e

(2.59)

and the equation for electron-electron collision frequency is given by

νee ≈
√

2

12π3/2

nee
4 lnλ

ǫ20m
1/2
e T

3/2
e

(2.60)

Like-particle collisions do not contribute to total mass transport as their effects ex-

actly cancel (p. 177 of Ref. [38]). Only under certain conditions∗∗ do like-particle

collisions contribute to any appreciable net particle flux. However, collisions between

unlike particles (electron-ion) do contribute to net particle flux. The electron-ion

collision frequency is similar to the electron-electron collision frequency (Eq. (2.60))

but modified to reflect the ion density and the average charge of an ion (to account

for multiple ionization) so that

νei ≈ νeeniZ
2

ne
(2.61)

The small-angle deflection Coulomb collisions have been found to be an extremely

important transport mechanism, especially in fully-ionized plasmas where the neutral

density is low. Coulomb collisions can only be neglected in cases where a combination

of parameters exist, such as a high electron temperature combined with a high neutral

density as is found in Hall thrusters (see Section 5.2.3), that cause electron-neutral

collisions to be the dominant transport mechanism. The reader is directed to Chapter

∗∗For example, E× B drift collisions derived by O’Neil et al[35, 64].
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5, Section 5.2.3 for a complete analysis of the relevant particle collisions in Hall

thrusters and in the Hall Electron Mobility Gage.

2.3 Fluctuation-induced Transport

Often in magnetized plasmas the charged particle transport has been experimen-

tally observed to be much higher than could be accounted for by classical collisions.

The enhanced transport, often called "anomalous" transport, has been observed in a

large number of configurations, including arc plasma discharges[65], magnetically con-

fined fusion plasmas[66, 67, 68], magnetron discharges[24, 69, 70], and Hall thruster

plasmas[21, 71, 24], among others, and is usually several orders of magnitude higher

than classical transport. The most prominent theory for the enhanced transport is

fluctuation-induced transport, which encompasses a number of coupled processes.

It is well known that plasmas have the ability to sustain oscillations and waves

arising from various instabilities and excitation mechanisms[72, 73] over a distance of

many Debye lengths. Because of this ability, particles in the plasma experience waves

as time varying electric and/or magnetic fields, which change their characteristic

motion according to the Lorentz force. However, since the particles themselves are

responsible for the existence of the oscillating fields, when their characteristic motion

is changed, the wave itself is also changed, which provides the fundamental coupling

of fluctuation-induced transport. The origin of plasma oscillations is beyond the

scope of this dissertation. The reader is directed to the theoretical and experimental

descriptions of the growth and propagation of plasma waves in the following references

[72, 73, 74, 75]. The remainder of this section will focus on the physical mechanism

by which such fluctuations cause transport.

The term Bohm diffusion is often used to describe all fluctuation-induced trans-

port, as Bohm was the first to derive the theory of this type of transport [76] [65].
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Bohm makes an attempt to quantify the diffusion transport in terms of a random

walk of the E×B drift of electrons. This concept was expanded on through a deriva-

tion by Yoshikawa and Rose in attempts to theoretically quantify the net transport

due to random density fluctuations. As described previously, an electric field per-

pendicular to a magnetic field creates a drift perpendicular to both E and B (over

several gyrations). Therefore an oscillating electric field (where the frequency of os-

cillation is much lower than the cyclotron frequency, ω′ ≪ ωce) in the presence of a

magnetic field would create an oscillating drift term, perpendicular to both, with an

amplitude and frequency corresponding to the strength and frequency of the electric

field perturbation. By this mechanism the E × B drift resulting from the oscillating

field displaces the particle many Larmor radii across the magnetic field (in Bohm’s

example [65] the drift length was 100 times the Larmor radius). If the E×B distur-

bances act as a randomizing process then the motion becomes a random-walk process

with the step length on the order of the average drift amplitude. By the theory of

Bohm, the oscillating drift creates a random walk where the diffusion coefficient can

be described by the usual form of Eq. (2.35). This description for Bohm diffusion is

adapted from Bohm[65] and Helander [63]. The step size corresponds to the E × B

deflection resulting from the field oscillation. Therefore, the step length is related to

the fluctuation by

δ = 〈τvE×B〉 = τ
∇φ
B

∼ τ
φ

δ

1

B
(2.62)

where ∇φ is the electric field amplitude of the fluctuation (not the static electric field,

if one is present). Then the square step size is given by

δ2 ∼ τ
φ

B
(2.63)

Driven by an instability, the plasma oscillations increase exponentially with time;

however, the diffusion process acts to damp the waves. Therefore there is a balance

that is achieved where the oscillations reach a steady state with the mean amplitude
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estimated by φsat, which is the saturation amplitude of the wave. Bohm presented

the estimated value of eφsat/kT = 16 [65] which was semi-empirically determined.

The relation of the saturation amplitude, φsat , to the temperature of the plasma, kT ,

has theoretical justification as the maximum potential that can occur in a plasma is

dependent on kT due to Debye shielding. The factor 16 was empirically determined

and agrees with experiments within a factor of two or three (p. 193 of Ref. [38]).

This value is highly dependent on the nature of the waves, however, and relies on

the assumption that the waves originate and are sustained within the plasma. The

resulting diffusion coefficient is given by

D ≈ φsat

B
≈ kT

16qB
(2.64)

The oscillations themselves are postulated to arise self-consistently out of plasma

instabilities caused by collective effects, but by the theory of Bohm, the effect on

charged particles is based on the equations for single particles in the presence of

external fields. Therefore, the origin of the electric field fluctuations is of little con-

sequence to the motion of the particles beyond what the collective effects present as

"external" fields. The only difference between that which is caused by self-sustaining

oscillations (plasma modes) and externally applied oscillations is the existence of a

"saturation" amplitude, which would not exist as a self-consistent quantity if oscilla-

tions were imposed externally (e.g., by an oscillating potential applied to electrodes).

On this argument, Bohm mobility could be observed in any case where an oscillating

electric field is present, transverse to the magnetic field, regardless of the growth and

propagation of instabilities within the plasma. However, if collective plasma effects

are not present, the random-walk step size will vary depending on the nature of the

external field fluctuations and will not be governed by the inherent properties of waves

in plasmas. By using the Einstein relation (Eq.(2.42)) Bohm diffusion is generally

48



translated to Bohm mobility[77] where

µBohm =
1

16B
(2.65)

In another description of fluctuation-induced mobility, which arises out of very specific

circumstances, it is shown that a net transport can occur due to electrostatic waves

transverse to the static electric field. This explanation is adapted from Thomas[55]

and shows a second order effect due to the combined effect of potential and density

fluctuations. Assume oscillating density and potential waves are established trans-

verse to the static electric field (previously established as Ez) and the magnetic field

(Bx) (in the E ×B Hall current direction) given by

φ (t) = φ0 + φ̃ = φ0 + φ cos (kyy − ω′t) (2.66)

ne (t) = ne,0 + ñe = ne,0 + ne cos (kyy − ω′t− γ) (2.67)

where γ is the difference in phase between the density and potential fluctuations

(shown in Fig. 2.6). The resulting oscillating E×B drift in the z-direction is given

by

vz (t) =
1

Bx

∂

∂y
(φ (t)) = −ky

φ

Bx
sin (kyy − ω′t) (2.68)

Thus the current density in the z-direction is given by

Jez (t) = q (ne,0 + ne cos (kyy − ω′t− γ))

(

−ky
φ

B
sin (kyy − ω′t)

)

(2.69)

Averaged over a period gives

〈Jez (t)〉 = −qkyne
φ

B
sin (γ) (2.70)

Explained conceptually, this result indicates that if there is a higher electron density
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Figure 2.6: Depiction of Eqs. (2.67), (2.68), (2.69) and (2.70) where a
second-order effect produces a net Jez (cross-hatched) averaged over a period.

in regions where the E×B drift is in the direction of qEz and a lower electron density

in regions where the E×B drift is directed opposite qEz, there will be a net transport

(averaged over one period) in the direction of qEz (in a Hall thruster this would be

toward the anode for electrons), that is dependent upon the phase difference between

the oscillating quantities of density, ñe, and electrostatic potential, φ̃ (or equivalently

oscillating electric field, Ẽ). This type of transport is outlined in Janes and Lowder[21]

where it is recognized that the average transverse electric field, Eθ = Etrans., goes to

zero but the average of neEtrans. does not, giving rise to net electron transport due to

the fluctuating E×B drift in the direction of qEz. However, by this description, the

net electron transport could just as easily occur in the direction opposite qEz, as no

physical principle is cited for the details of the phase correlation. In other words, if

the phase shift, γ, is in the range 0 6 γ 6 π, the net transport is in the qEz direction,

but if the phase shift is in the range π 6 γ 6 2π, the net transport is opposite
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the qEz direction and no physical reason is provided that guarantees the phase shift

be in the former range. Furthermore, this is a simplified description that does not

entirely describe the plasma behavior in most conditions, which are characterized

by random conditions that still result in net transport. Nonetheless, this provides a

visual representation of how the fluctuating E × B drifts can lead to net transport

due to a second-order effect.

Yoshikawa and Rose[78] presented a rigorous non-linear derivation that predicts

a collisionless net transport in the direction of Ez and in the direction of −∇n/n
(mobility and diffusion, respectively) arising out of random fluctuations in density

(isotropic turbulence). The purpose of Yoshikawa and Rose’s work was to theoretically

derive the Bohm coefficient, 1/16. They describe the mechanism driving transport

by realizing that a density fluctuation in the E×B (Hall) direction would correspond

to a fluctuating electric field also in the Hall direction. The fluctuating electric field

creates a fluctuating axial E × B drift (depicted in Fig. 2.6), where Yoshikawa and

Rose also recognize that net transport must be due to a second-order effect since the

"first-order fluctuating E ×B drifts average to zero"[78]. However, the second-order

effect in Yoshikawa and Rose’s work arises out of random fluctuations (defined by a

statistical variance) rather than the coherent fluctuations depicted in Fig. 2.6.

The derivation can be found in Ref. [78] and only the final result and qualitative

description is presented here. Equation [31] combined with Eq. [10] in Ref. [78] gives

the result for the net transport in the direction of the static electric field (Ez) and/or

density gradient (∇n/n) due to turbulent fluctuations which have been assumed to

be uniform in all directions. Equation (2.71) is adapted to reflect the orientation of

B in the x-direction and E in the z-direction as has been presented throughout this

chapter, and the axial electron motion is expressed in terms of z-velocity rather than

flux for comparison to the transport equations derived in Section 2.2.

vz =
π

4
S

(

Ez

B
+
kTe

qB

∇zn

n

)

− a

(

Ez

B
+
kTe

qB

∇zn

n

)

(2.71)
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The resulting description of transport presents two competing effects with the coeffi-

cients S and a, where S is given by

S =

〈

(n− n0)
2〉

n2
0

(2.72)

and represents the mean-square deviation of the density fluctuation and a represents

the inverse Hall parameter (1/ (ωceτm)) so that the second term in Eq. (2.71) is the

equation for classical transport. If S≫a, either because of strong density fluctua-

tions or even moderate fluctuations in a highly magnetized plasma with infrequent

collisions, the resulting transport tends to Bohm transport where the diffusion and

mobility coefficients would be given by

DBohm =
πkTe

4qB

〈

(n− n0)
2〉

n2
0

(2.73)

µBohm =
π

4B

〈

(n− n0)
2〉

n2
0

(2.74)

This result suggests that in highly magnetized plasmas fluctuation-induced mobility

prevails when the collision frequency is low and magnetic field is high and/or when

the plasma is hot and confined, where classical transport prevails in a quiescent

plasma environment or an environment with a low magnetic field and/or high collision

frequency (low Hall parameter, ΩH).

2.4 Summary

This chapter has laid the foundation for charged particle transport, where Chapter

3 uses these concepts to explain the electron transport in the specific environment of

a Hall thruster, and Chapter 5 references these concepts in the analytical characteri-

zation of the plasma within the Hall Electron Mobility Gage. Single-particle motion
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was presented to explain the characteristic motion of charged particles in prescribed

magnetic and electric fields, which will be used in describing electron dynamics in the

Hall thruster channel and comparing them to the electron dynamics within the Hall

Electron Mobility Gage. In the field conditions of a Hall thruster and the Hall Elec-

tron Mobility Gage the dominant bulk motion is the E × B drift due to the crossed

electric and magnetic fields, where other drift terms can be generally neglected. Col-

lective descriptions, both fluid and kinetic, were also briefly presented. The concept

of magnetic mirrors was presented to describe the process of confinement of particles

through a magnetic field gradient. The confinement provided by magnetic mirrors

was shown to be dependent on the direction of the velocity vector, where in magnetic

mirror confinement devices, an isotropic Maxwellian velocity distribution, which is

assumed in the fluid description, must be replaced by a non-Maxwellian distribution

that can only be captured using the kinetic description. The kinetic description will

be used in 5.3.2 to analyze the effect of collisions on the radial confinement of elec-

trons in the Hall Electron Mobility Gage, which is achieved through electrostatic and

magnetic mirror confinement mechanisms.

It has been shown that a separation of plasma phenomena exists at the Debye

length where on length scales small compared to the Debye length, single particle

effects dominate and on length scales large compared to the Debye length, collective

effects dominate. This may be translated to state that waves and plasma oscillations

cannot be sustained and will be damped on length scales smaller than the Debye

length. This point is extremely important in describing the electron dynamics within

the Hall Electron Mobility Gage, discussed in detail in Chapter 5. It has also been

noted that non-neutral plasmas exhibit similar phenomena as neutral plasmas with

equivalent expressions for Debye length and plasma frequency, where the similarity

is also important so that these concepts (especially Deybe length) may be translated

directly to the non-neutral plasma environment of the Hall Electron Mobility Gage.

Classical diffusion and mobility were presented in order to outline the mech-
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anisms for collisional transport. While the diffusion and mobility equations were

initially derived from the fluid equations of motion, the same equations result from

a random-walk description which describes diffusion and mobility from a microscopic

standpoint. The random-walk description was shown to be equivalent to the fluid

description for transport when a Maxwellian distribution of velocities was assumed.

However, the random-walk description of transport processes may also be used in

a much more general sense, such as the description of Bohm transport, where the

step length and the characteristic time between steps (randomizing events) is known.

Classical transport is rarely observed in practice, with regard to magnetized plasmas,

where some type of anomalous mechanism is usually present. The general theory of

fluctuation-induced transport was presented, which is primarily cited for anomalous

cross-field transport, in order to describe the physical mechanism by which fluctua-

tions may cause anomalous cross-magnetic-field transport.
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Chapter 3

Hall Thrusters & Related Research

3.1 Introduction

This chapter provides a review of research in electron transport in Hall thrusters and

also includes an overview of other configurations where pertinent discoveries have

been made in magnetized plasma transport. Section 3.2 outlines the general physics

of a Hall thruster, which was covered briefly in Section 1.1. Section 3.3 applies the

general transport theory presented in Sections 2.1 - 2.3 to the specifics of a Hall

thruster, presenting both classical and anomalous mobility mechanisms focusing on

the research efforts and the current state of the field. Section 3.4 addresses other

relevant configurations where charged particle transport is of concern, with special

attention to the contributions due to fusion research, which has been responsible for

many of the advances in the understanding of charged particle transport. The final

section, Section 3.5, presents a critical evaluation of the state of research, revealing

areas that remain unresolved or require greater attention and outlines the contribution

of the research presented herein.
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3.2 Physics of Hall Thrusters

Hall thrusters are in-space propulsion devices that are particularly well suited for or-

bit transfer maneuvers and satellite station-keeping[13]. Hall thrusters are generally

considered electrostatic propulsion devices as the acceleration mechanism is achieved

through the application of a DC electric field∗. There are two competing Hall thruster

configurations[11], the anode-layer (TAL) and the stationary plasma thruster (SPT),

where this is mentioned only to specify that the discussion presented herein is con-

cerned with the SPT-type Hall thruster. The magnetic field in the Hall thruster is

indirectly involved in the acceleration mechanism. The radial magnetic field is em-

ployed to impede electron motion, which acts as a "resistor" allowing a large potential

difference to exist over the discharge channel. In this way, the magnetic field governs

the electrostatic potential structure in the discharge channel and thus is directly in-

volved in creating the electric field that accelerates propellant ions, which provides

the thrust in Hall thrusters.

A brief overview of the physics of a Hall thruster was presented in Chapter 1 ,

whereas a more detailed description is given here. A cross section of a Hall thruster

was shown in Figure 1.1 with the relevant features identified, namely the anode which

also acts as a propellant feed, the external cathode, the simplified circuitry and re-

sulting fields (magnetic and electric) and the discharge plume. Neutral propellant is

introduced at the anode region of the discharge channel. The axial electric field is

created by the applied voltage between the anode inside the discharge channel and

the external plasma or free space, which is at or near the cathode potential. This

electric field accelerates electrons supplied from the cathode toward the anode. Elec-

trons gain energy from the electric field sufficient to ionize propellant neutrals by

electron-impact ionization. Ions created in the discharge channel are subsequently

∗as opposed to electrodynamic to describe pulsed devices or electromagnetic where the magnetic
field is directly utilized in the acceleration mechanism
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accelerated away from the anode through the axial electric field and ejected from the

thruster to produce the thrust necessary to accelerate the spacecraft. For the ions

expelled from the thruster, the cathode supplies an equivalent number of electrons to

the exhaust plume to maintain spacecraft neutralization.

The radial magnetic field in the discharge channel provides an integral role in the

operation of a Hall thruster. Electrons are highly mobile due to their small mass. If

there were no magnetic field, any applied electric field would cause the electrons to

stream to the anode and the massive ions would experience very little acceleration

relative to the electrons. Therefore, a radial magnetic field, created through magnetic

windings on the inner and outer magnetic poles, is applied so that the electron axial

velocity is turned into a gyration perpendicular to the magnetic field and their motion

to the anode is significantly inhibited. Superimposed on the small-scale gyrations,

the electrons assume an azimuthal drift due to the crossed axial-electric and radial-

magnetic fields and are essentially "confined" axially in the gyro-orbits and azimuthal

E×B orbits. The field is specifically tuned so that the electron gyro-orbit is smaller

than apparatus dimensions, yet ions, due to their large mass (104 − 105 times the

mass of electrons) have a gyro-orbit that is much larger than apparatus dimensions.

The deflection of ions due to the magnetic field is negligible so they are accelerated

primarily in the axial direction through the cloud of "confined" electrons on nearly

straight paths from the thruster. Since electrons are thermally mobile and freely

stream along magnetic field lines but their motion is impeded across field lines, the

magnetic field lines have been postulated to form electric equipotential surfaces[11].

Axial electron motion is impeded the most at the point where the magnetic field is

the strongest, whereby creating the largest gradient in electric potential. This region

is designated as the "acceleration region" of the Hall thruster.

As described in Chapter 2, electrons are able to cross magnetic field lines by

collisions, which free them from the confined orbits, giving rise to cross-field mobil-

ity. Through cross-field mobility, electrons migrate to the anode creating a current
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indicated in Figure 1.2 as "recycle current." These collisions are desired, as this is

the process by which propellant neutrals are ionized (through electron-impact ion-

ization). However, it has been shown that the electron mobility observed in Hall

thrusters greatly exceeds that which can be accounted for by collisions alone [21, 71].

Any recycle current in excess of that which is needed to ionize the propellant be-

comes an efficiency loss, as power is required to maintain the current but contributes

nothing to the operation of the Hall thruster in terms of propellant ionization or

thrust. Therefore, understanding the mechanism of cross-field mobility is important

for thruster efficiency. Furthermore, computational models, which are used to predict

performance parameters and failure mechanisms of Hall thrusters, depend highly on

the treatment of cross-field mobility which historically has been determined empiri-

cally [29, 30, 31, 32, 33, 34], so understanding the mechanism for electron transport

from first principles is necessary for more accurate modeling without the use of exper-

imental data. The mechanisms for electron transport in Hall thrusters are identified

and described in the following sections, including classical mobility and what is termed

"anomalous" mobility. Anomalous cross-field mobility for Hall thrusters is postulated

to arise due to two main contributors: the interaction at the dielectric walls (wall ef-

fects) and fluctuation-induced mobility (previously described in the general case in

Section 2.3).

3.3 Mobility Research in Hall Thrusters

Hall thruster research began simultaneously, but independently, in the United States

and Russia in the early 1960s[21, 79, 80]. Hall thrusters were in some ways favorable

over gridded ion thrusters, mainly due to the presence of electrons in the ion accel-

eration channel which eliminates the space charge limitation that exists in gridded

58



ion thrusters[12]†. Furthermore, the use of a magnetic field rather than acceleration

grids removes a known failure mechanism in gridded ion thrusters through the ero-

sion of the grids. However, the characteristic level of Isp in gridded ion thrusters

(5,000-10,000 s) was not realized at reasonable efficiencies in Hall thrusters due to

degrading efficiency at high discharge voltages. Hall thrusters were limited to an Isp

of ∼1,000-2,000 s if they were to operate at optimal efficiency[22, 9]. ‡

Janes and Lowder were the first in the U.S. to document the "anomalous" cross-

field electron mobility in the Hall thruster geometry in 1966. They found the current

due to backstreaming electrons to be two to three orders of magnitude higher than

predicted by classical theory. In their investigation they observed low frequency

azimuthal fluctuations in density, suggesting a polarization field in the azimuthal

direction (Eθ), where the anomalous mobility could be accounted for by a secondary

drift term in the axial direction. It should be noted that this is not the first observation

of "anomalous" mobility or diffusion, only the first documentation in the Hall thruster

geometry. Anomalous diffusion was the subject of many experimental investigations

and theoretical descriptions prior to Janes and Lowder’s work [81, 76, 39, 62] that

date back to the late 1940s to which Janes and Lowder compare their findings. In

the late 1960s, the U.S. reduced efforts on Hall thrusters due to lack of progress

and focused efforts on other electric propulsion devices, specifically the gridded ion

thruster, that showed more promise at the time for the criteria being sought[11].

Hall thruster research continued in Russia, with much of the research effort led by

Morozov and Esipchuk[11]. Much of the focus of Esipchuk was on the instabilities in

Hall thruster plasmas that govern the growth and propagation of plasma density fluc-

tuations thought to be responsible for anomalous mobility. The typical present day

Hall thruster, coming out of these Russian efforts, has a much different configuration

†The presence of only ions between the acceleration grids of a gridded ion thruster limits the
discharge current density.

‡Hall thrusters may be operational at higher specific impulse (5,000-10,000 s) but at significantly
degraded efficiencies.
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and operating parameters than that initially studied by Janes and Lowder (lower over-

all magnetic field, "pinched" magnetic field at inner/outer radii of discharge channel

rather than strictly radial, narrower pole pieces, lower discharge voltage, and nar-

rower channel) where these changes are a result of a number of empirical studies done

for performance optimization[12, 82]. Even though performance was optimized, the

anomalous mobility continued to be a significant efficiency limitation.

Hall thruster research efforts in the U.S. and Europe grew rapidly in the 1990s

due mainly to the success of the Russian efforts in Hall thruster development and

the release of Russian technical documents after the fall of the USSR. A number of

research efforts are ongoing in the U.S. and internationally to explore the anomalous

mobility in Hall thrusters[83, 33, 8, 34, 84]. The two most cited contributors to

anomalous mobility are collisions with dielectric walls (usually termed wall effects)

and plasma fluctuations (fluctuation-induced mobility). It has been found with near

certainty that both of these factors play a role in the Hall thruster electron mobility,

but the exact contribution of each and the reciprocal effects that exist between the

two remains unknown. These will each be discussed in the following sections along

with the current state of the research field.

3.3.1 Classical Electron Mobility

Classical theory accounts for the electron transport due to momentum-transfer colli-

sions, which free the electrons from their gyro-orbits, allowing them to migrate across

B-field lines toward the anode in Hall thrusters. Electron density gradients will have a

much smaller effect on net electron flux in Hall thrusters than the applied electric field

so the classical cross-field diffusion term is neglected and usually only mobility consid-

ered. Electrons experience momentum transfer collisions through collisions with ions

or neutrals. Neutral density in a typical Hall thruster varies from ∼ 1018 − 1021 m−3
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(∼ 1012 −1015 cm−3)§ in the discharge channel where the minimum neutral density is

found at the acceleration region. For xenon propellant and a typical value of Te = 20

eV, a typical neutral density in the acceleration region (∼ 1019 m−3) corresponds to

an electron neutral collision frequency of νen = 5 × 106 s−1. Since quasi-neutrality is

assumed everywhere in a Hall thruster the ion density is assumed to be approximately

equal to the electron density which is typically ∼ 1018 m−3[9]. Equation (2.61) is used

to determine the electron-ion collision frequency which is found to be νei ∼ 105 s−1

for an electron temperature of ∼ 20 eV. The cyclotron frequency, given a typical

magnetic field of 120 G (0.012 T) is ωce = 2 × 109 s−1. This gives a Hall parameter

(ωce/νm)¶ of about 400 meaning the electrons are highly magnetized in this region. If

the cross-field mobility behaved classically, using Eq. (2.52), this would correspond

to a mobility coefficient of 0.01-0.1 m2/(V-s) (using the values for neutral density,

collision frequency and magnetic field described above).

Strictly classical mobility has never been observed in the acceleration region of

a Hall thruster where the neutral density is low and the magnetic and electric fields

are high (regions of high Hall parameter). Classical collisional mobility in a Hall

thruster has only been observed upstream of the acceleration region, where the neutral

densities are high and magnetic field is significantly weaker which gives rise to a much

lower Hall parameter (ΩH ∼ 1−10)[71], where electrons are very weakly magnetized.

In the acceleration region of a Hall thruster, where electrons are magnetized, the

mobility coefficient has been experimentally found to be on the order of ∼ 10 m2/(V-

s) which is 2-3 orders of magnitude higher than the classical value[71]. In these cases

the contribution of classical collisional mobility is overwhelmed by the "anomalous"

mobility. The relative contribution of classical mobility and anomalous mobility has

been found to be very sensitive to the electron Hall parameter in other magnetized

§These values are typical of many laboratory Hall thrusters operating in the 1.5 kW range, such
as the SPT-100 and BPT-2000[9].

¶νm represents the collision frequency for all momentum transfer collisions, both Coulomb
(electron-ion) and electron-neutral.
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plasmas as well [54, 85], where a high Hall parameter renders the plasma susceptible

to the growth of instabilities that drive anomalous transport. Thus, classical theory is

insufficient to describe electron transport in the acceleration region of a Hall thruster

and other descriptions of electron transport must be established. The two most

prevalent descriptions of anomalous electron transport in Hall thrusters are given in

Section 3.3.2 and 3.3.3.

3.3.2 Wall Effects

In a Hall thruster, dielectric walls of the discharge channel insulate the plasma from

the magnetic circuit and allow an electric field to exist along the axial length of the

discharge channel. The contribution of the walls to the electron mobility is suggested

to have two potential effects: first, the simpler of the two is that the collisions of

electrons with walls have an effect similar to electrons colliding with neutrals; second,

the interaction at the wall could create, enhance, or dampen plasma instabilities.

The former is discussed here where walls will be treated as another collision species

with an effect analogous to classical electron-neutral collisions; the latter is essentially

grouped into Section 3.3.3 in the discussion of fluctuation-induced mobility with only

brief mention in this section. Since electrons are thermally mobile along radial mag-

netic field lines, and since the channel width (∼ 2 to 3 cm) is much smaller than the

mean free path for electron collisions with neutrals (∼ 1 m) an electron has several

opportunities to collide with the channel walls before colliding with a neutral. How-

ever, in steady-state operation a negative sheath builds up on the dielectric walls so

that only electrons with sufficient energy (parallel to the magnetic field) to overcome

the sheath can collide with the dielectric walls. Electrons with insufficient energy are

reflected by the sheath and are directed back to the center of the channel annulus. If

the electron distribution function is taken to be Maxwellian then the flux to the walls
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is given according to Gombosi’s equation for flux to a surface [48]:

Γew =
1

4
v̄ene exp

(−eφs

kTe

)

(3.1)

where the sheath potential, φs, is determined from the electron and ion flux to the

wall:

φs =
kTe

e
ln

(√

mi

2πme

)

(3.2)

The electron-wall collision frequency is given by[55]

νew =
1

2

v̄e

ℓ
exp

(−eφs

kTe

)

(3.3)

where ℓ is the channel width. For typical parameters of a Hall thruster this corre-

sponds to an electron-wall collision frequency of ∼ 105 s−1, which is comparable with

the classical collision frequency with neutrals. Eqs. (3.1)-(3.3) assume an isotropic

Maxwellian distribution. However, the assumption of this distribution could only be

valid if the mean free path is much shorter than the channel width.‖ The assumption

of an isotropic Maxwellian distribution in the discharge channel of a Hall thruster

has been shown to be incorrect[23], as the infrequent collisions fail to maintain the

thermalized electron distribution. In a kinetic treatment of Ref. [23] it was found

that the electron distribution function is highly anisotropic and strongly depleted at

high energies in the direction parallel to the magnetic field due to losses at the walls.

The bulk of electrons that remain in the plasma have a long mean free path and do

not repopulate the Maxwellian tail, causing Eqs. (3.1)-(3.3) to overestimate the flux

to the walls. By this argument, the flux of electrons to the walls is determined by the

rate of repopulation of the Maxwellian tail of the velocity distribution parallel to the

magnetic field. The Maxwellian tail of the parallel electron velocity distribution is

repopulated by the scattering of high-energy electrons from a direction perpendicular

‖Many electron collisions are required for momentum and energy transfer to continually maintain
the Maxwellian distribution in spite of the anisotropic losses for velocities normal to the walls.
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to the magnetic field to a direction parallel to the magnetic field (into the "loss cone"

which was presented in Section 2.1.1 and will be revisited in Section 5.4), which is

caused by electron-neutral collisions. This creates an electron flux to the walls that

is considerably lower than that presented by equations Eqs. (3.1)-(3.3) and depends

on the electron-neutral collision frequency in the same way as classical mobility. This

may imply that the wall effects do not significantly contribute to the electron mobil-

ity; however, it has been shown that changes in the wall material and channel width

significantly affect the discharge properties of a Hall thruster[23, 86, 87] showing that

the influence of the dielectric walls cannot be ignored. The actual role of the dielec-

tric walls in Hall thruster operation continues to be a subject of debate, where it is

not clear if the changes in the dielectric walls directly contribute in part to electron

mobility through near-wall conductivity as outlined by Eqs. (3.1)-(3.3) or provide a

secondary effect on electron mobility by enhancing or dampening fluctuation-induced

mobility in some way.

The effects of secondary electron emission (SEE) from the dielectric walls has been

investigated for contribution to the axial electron flux. The SEE is hypothesized to

contribute to mobility in two ways[23]: 1.) the SEE can form a stream of electrons

that could possibly contribute to fluctuations by the two-stream instability, 2.) in

the reflection of the SEE beam between the dielectric walls (secondary electrons gain

sufficient energy to overcome the sheath on the opposing channel wall) the electrons

may contribute to the axial current because of the axial motion due to the gyration

and the difference in phase angle of the gyration at the reflection. The first effect can

only be treated in a self-consistent solution describing fluctuation-induced mobility

(discussed in the following section). The second effect is a single-particle effect that

may be investigated analytically/computationally such as is done in Kaganovich et

al.[23] and may also be investigated experimentally separate from the operation of a

Hall thruster (see Section 3.5).
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3.3.3 Fluctuation-Induced Mobility

The theory of fluctuation-induced mobility states that oscillations can contribute

to the cross-field electron mobility. The plasma environment of a Hall thruster is

known to be non-quiescent, where field and density oscillations in the discharge of

a Hall thruster have been observed over a large range of frequencies spanning from

1 kHz to 5 MHz [25], with investigations ongoing to characterize higher frequency

oscillations up to 10 MHz and higher[26]. For fluctuation-induced mobility to explain

axial transport in a Hall thruster there must be azimuthal fluctuations in density and

potential, which result in a fluctuating E×B drift in the axial direction. The Bohm

mobility coefficient is often used to describe the fluctuation-induced mobility in Hall

thrusters where the mobility is given by

µBohm =
1

16B
(3.4)

As discussed in Section 2.3, Bohm mobility describes the transport due to fluctuations

of the E×B drifts due to plasma turbulence. The dependence on 1/B comes from the

drift velocity (E/B), and the coefficient of 1/16 was empirically determined by Bohm

(details are provided in Section 2.3). The coefficient of 1/16 is dependent on the spe-

cific plasma environment and thus does not adequately capture the variation of the

fluctuation-induced mobility in Hall thrusters along the axial length of the discharge

channel where the plasma environment (namely Hall parameter and growth of insta-

bilities, which give rise to enhanced transport) may change dramatically. The Bohm

coefficient does provide surprising agreement and is on the same order of magnitude as

experimental results[71]. However, the theory of fluctuation-induced mobility, when

described using the constant coefficient 1/16, fails to capture variations in plasma

fluctuation behavior over the axial length of the discharge channel (which correspond

to variations in the empirical constant).

Fluctuation-induced mobility may be more adequately described by taking into
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account the nature of the plasma fluctuations in the determination of the anomalous

mobility coefficient, rather than assuming a Bohm-type plasma. As described in

Section 2.3, the first order E × B drifts average to zero; however, the net second-

order effect due to the correlation of density fluctuations and electric field fluctuations

gives rise to a non-zero axial electron flux that can be calculated analytically by Eq.

(2.71). Phase correlated density and potential fluctuations have been experimentally

observed in a Hall thruster for low frequency waves (5-10 kHz)[21]. Based on this

analysis, Janes and Lowder found an experimental coefficient of 1/11 (average over

the length of the discharge channel) for the specific environment of the Hall thruster

under investigation in their experiments. In hopes of observing similar phenomena,

high frequency fluctuations have been experimentally investigated [55, 26, 88, 89]

where accurate data was desired in the 60-600 kHz range; however, instrumentation

has been limiting at high frequencies[26] and experiments are ongoing.

Rather than requiring specific phase and frequency information, the description

by Yoshikawa and Rose [78] was given in terms of the statistical variation of fluctua-

tions, where the resulting fluctuation-induced mobility coefficient is a function of the

mean-square deviation of the density fluctuations, which can be measured directly.

(A critical assumption is made by Yoshikawa and Rose by presuming isotropic turbu-

lence and treating fluctuation amplitude as a scalar quantity.) Meezan[71] obtained

time resolved electrostatic probe measurements to gain an estimate of the fluctu-

ation amplitude to experimentally determine the mobility coefficient described by

Yoshikawa and Rose’s analysis. Meezan compared this mobility coefficient with the

mobility coefficient found using direct measurements of axial electron flux and den-

sity and found strong agreement between the two. These results provided credence to

fluctuation-induced mobility in Hall thruster geometries; however, the coefficient for

fluctuation-induced mobility using Yoshikawa and Rose relies on experimental data.

A method to determine the nature of the plasma fluctuations based on known con-

ditions (both plasma and geometrical properties) is necessary so that the electron
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mobility can be determined explicitly without experimental data. This need led to

the utilization of quasi-linear theory for the Hall thruster environment in order to

predict the growth and evolution of fluctuations, which is described in the following

paragraph.

Attempts have been made to characterize plasma fluctuations as a function of

thruster and/or plasma parameters so that the cross-field electron mobility can be

predicted without use of experimental data and empirical correlations. This may

seem like a hopeless task as a magnetized plasma has been found to be susceptible

to a variety of instabilities which contribute to the growth and propagation of waves.

However, what has been observed in practice is that plasma waves exhibit a non-

linear feedback mechanism where various waves are excited but the total amplitude

saturates so that the fluctuations are sustained, yet do not grow (this is often called

"non-linear stabilization"[56]). A quasi-linear kinetic approach for describing this

process was developed through a collection of work by Krall et al.[90, 91, 92] among

others[93, 94, 95, 96], largely for fusion research, which was used to predict the growth

and evolution of instabilities resulting in fluctuation-induced electron transport. In

general the quasi-linear approach defines plasma parameters in terms of time-averaged

quantities plus a fluctuating term and takes into account second-order effects that

arise out of the combination of two first order terms, where the second order-effects

cause net transport.∗∗ The quasi-linear approach was first used for electric propulsion

devices in a theoretical derivation by Choueiri[54] for magnetoplasmadynamic (MPD)

thrusters, which was validated experimentally through the independent results from

Black et al.[85].

Thomas[55] provided the first application of the quasi-linear transport theory

to Hall thrusters, whose work was expanded on by Spektor[83]. The quasi-linear

method of quantifying fluctuation-induced transport involves predicting the expected

∗∗A good top-level description of this theory and methods can be found in Cook[56] and
Stringer[97]. More elaborate derivations of the quasi-linear model can be found in Bernstein and
Engelmann (1966)[98]; Davidson (1972)[96]; and Cook (1974)[99].
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behavior of fluctuations (wavenumber, frequency and phase relations) based on time

averaged plasma and field quantities through solving the dispersion relation, which

describes the susceptibility to certain plasma fluctuations. Based on this "suscep-

tibility" to plasma fluctuations an anomalous electron collision frequency, νAN , is

calculated through the quasi-linear transport model. The quasi-linear method holds

promise for much more accurate computational models, as the process lends itself

well to iterative procedures. The anomalous collision frequency can be calculated

from profiles of plasma properties (density, velocity, temperature) and fields (electric

and magnetic), the computed νAN is used to predict plasma and field profiles, which

can be used to determine a new νAN , etc. Toward this goal Thomas[55] developed

a simple local dispersion relation derived from the fluid equations over the discharge

channel of a Hall thruster, where Spektor[83] extended this to a generalized fluid

dispersion relation, taking into account several terms neglected by Thomas. At the

time of publication of this dissertation these studies have not produced results agree-

ing with experiments due to simplifications and uncertainty in pertinent parameters;

however, the method shows great promise for describing anomalous transport from

first principles rather than from empirical results as has been done historically for

Hall thruster electron transport.

3.4 Other Plasma Transport Studies

Anomalous diffusion has been observed in magnetic confinement fusion devices, where

the fusion community has been primarily responsible for the majority of advances

in plasma transport theory. In fusion plasmas, densities of 1020 − 1022 m−3 must

be confined for 1-10 s and heated to thermonuclear temperatures, where anomalous

cross-field transport has been the limiting factor in achieving "break-even" operation

for energy generation[68]. It was found that the diffusion of the plasma could not be

explained by classical electron-neutral collisions and could not be explained by large-

68



angle scattering between charged particles. Since the plasma was nearly fully ionized,

the enhanced transport spawned the theory of long-range small-deflection Coulomb

collisions derived by Spitzer[62] (presented in Section 2.2.3). The enhanced transport

also gave rise to the derivation of neoclassical transport where particles exhibit a

characteristic orbit (often called the "banana orbit") much larger than the Larmor

radius, where the banana orbit becomes the modified step size of the random walk[66].

Even with the inclusion of Coulomb collisions and neoclassical transport, however, it

was found that various instabilities caused significant increases in cross-field transport,

termed L-mode diffusion (low-confinement mode). It was discovered by Wagner et

al.[67] that much of the turbulence could be suppressed by strong plasma shear that

would lower the diffusion, termed H-mode diffusion (high-confinement mode), by the

distortion and breaking up of turbulent eddies. This concept of plasma shear has

been applied to models in Hall thrusters where a similar suppression of fluctuation-

induced transport has been suspected[100]. The fusion research community is credited

with much of the development of the theory of plasma turbulence, especially in the

development of quasi-linear theory (described above in Section 3.3.3), and is on the

forefront of new research in turbulent plasma transport.

Anomalous electron transport has been found in other configurations resembling

the geometry of a Hall thruster; in the general case this geometry would be considered

a Hall Effect Accelerator (HEA) or a closed E × B device. Hall Effect Accelerators

were explored as a candidate for neutral beam injection for fusion plasmas in the

1970s[101] and were rejected due to the low fraction of ion current to discharge current

(i.e. excessive electron mobility). More recently, geometry similar to a Hall thruster

is found in planar magnetron discharges for material sputtering, where anomalous

mobility has been observed in these devices, as well[102]. Currently, the goal in the

planar magnetron discharge research community is much the same as the goal in

the Hall thruster research community, where a physical description of the anomalous

mobility in the general case would be useful for computer modeling efforts in order to
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predict discharge parameters[102, 103, 69]. In the operation of a pulsed magnetron it

was found that the anomalous electron conductivity exceeded the Bohm value, where

the pulse length was 10-100 µs with a repetition rate of 50 Hz.[69] (Because of the

pulse length, processes that occur at frequencies lower than 10-100 kHz will not be

fully developed.) It was suspected that in this case, fluctuations were able to achieve

higher saturation amplitudes than in DC operation causing the mobility to exceed

the Bohm value which is based on saturation in steady state operation.

In studying plasma diffusion, insight into fundamental plasma physics processes

has been gained through the investigation of non-neutral plasmas. Non-neutral plas-

mas exhibit similar phenomena as quasi-neutral plasmas such as Debye shielding,

oscillations and stability[91, 58] (as previously explained in Section 2.1.4). Near-

classical mobility has been observed in Penning traps [58, 104], which provide a simple

environment where disturbances have been applied in a controlled manner to excite

plasma modes, investigate instabilities and drive transport. Classical and fluctuation-

induced transport through investigations of waves and oscillations [105, 106], growth

of instabilities[107, 108], neo-classical transport[109, 110] and like-particle collisional

transport [35, 111] have been investigated through the use of non-neutral plasmas.

Furthermore, a reduction in plasma density has been used to reduce collective effects

in order to study single particle dynamics in Penning trap fields[112].

It is obvious that the matter of anomalous transport is not unique to Hall

thrusters, rather this dilemma extends across several disciplines whose applications

are concerned with magnetic confinement of plasmas. Therefore, the solution to

anomalous transport will likely come out of a collaborative effort benefiting from ad-

vances across several disciplines. For example, quasi-linear theory to describe plasma

turbulence was first developed in the fusion community but has been used in several

other disciplines to describe similar plasma behavior. Furthermore, charged particle

traps have been used to confirm fundamental plasma physics processes that have been

theoretically proposed and to replicate processes observed in fusion plasmas. The ap-
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proach in the research presented in this dissertation, likewise, utilizes the non-neutral,

low-density plasma approach for discovery of Hall thruster processes.

3.5 Critical Review & Contributions

The main goal of current Hall thruster research is to extend and enhance the per-

formance of Hall thrusters over a wider range of operating parameters. This goal

carries with it a number of requirements. Much of Hall thruster physics is empirically

understood, but to scale the operating parameters outside of the current regime, an

understanding of the fundamental physics of Hall thrusters is necessary, namely the

growth of instabilities and fluctuations, the physics at the dielectric walls, and their

contribution to electron mobility. Second, there is a desire to understand and con-

trol fluctuations in hopes of suppressing electron mobility to increase the efficiency

of Hall thrusters within their typical operating parameters. Third, which is coupled

into the previous requirements, there is a desire to accurately model the physics of

a Hall thruster for future designs, scaling and optimization, and lifetime analysis.

Current computer models contain a number of "fit" parameters to describe electron

mobility that may not apply in all situations. In some cases electron mobility is

given a constant collision frequency in the discharge channel[31, 32] or the discharge

channel is divided into "regions" where each region is given a particular electron mo-

bility "mode" (such as classical, Bohm, wall dominated, etc.)[34]. Attempts have

been made to incorporate physical principles into empirical models such as the shear-

based model developed by Scharfe et al.[100, 113] where E × B shear (where the E

and B fields change significantly along the axial length of the discharge channel) is

hypothesized to suppress turbulent transport. These models have provided better

agreement with experiment than using a less detailed model such as Bohm and have

also successfully replicated discharge oscillations characteristic of Hall thrusters, but

the empirical fit parameters have still been found to be sensitive to the specific Hall
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thruster and operating parameters modeled and are not applicable across-the-board.

The exact mechanism involved in fluctuation-induced mobility is not clearly de-

fined and empirical formulations are generally used in practice. The following series of

unknowns involved with fluctuation-induced mobility complicate an exact derivation

from first principles: 1.) the origin of the fluctuations and saturation mechanisms,

2.) the steady-state solution describing the nature of the fluctuations (in terms of

fluctuation amplitudes/phases of various quantities) 3.) the transport as a function of

fluctuation characteristics. The origin of instabilities and growth of the fluctuations

is highly dependent on the geometry and plasma boundary conditions, which make it

case specific (unknown #1). Further complicating fluctuation-induced transport, the

coupling between the self-sustained fluctuations and transport is not at all straightfor-

ward (unknown #2). Disregarding the complicated feedback in sustained fluctuations

and transport, theories describing exactly how these fluctuations result in transport

are varied (unknown #3). However, the third unknown is the most developed in

terms of theory where several descriptions exist[78, 76, 56] and discrepancies between

differing theories are small. Cook[56] maintains (and the author agrees) that the real

problem with fluctuation-induced transport is the self-consistent solution describing

the origin, growth and saturation of the fluctuations (unknowns #1 and #2). Toward

a solution to the realproblem, Thomas[55] and Spektor[83] have taken steps to apply

quasi-linear theory (developed previously for other applications) to form a description

of fluctuation-induced transport relevant to Hall thrusters. These derivations show

promise for a solution to describe the anomalous transport in Hall thrusters; how-

ever, it is suspected that relevant physics is absent from the current derivations as

experimental results have not been replicated thus far. It is also suspected that the

problem of anomalous mobility in Hall thrusters is truly non-linear, where spatial and

temporal interactions exist between waves that would not be adequately captured by

the quasi-linear approach.

The influence of the dielectric wall-plasma interaction is also not adequately de-
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scribed by current theories. The dielectric wall material and discharge channel width

have been shown to significantly affect Hall thruster discharge properties[86], where

the changes are attributed to altered electron mobility, but the exact physics to de-

scribe the influence of the dielectric walls is lacking. The difficulty with describing the

effects of the dielectric walls is the coupling that exists between the sheath structure

at the dielectric walls and the growth/origin of instabilities, fluctuations where the

effect of the dielectric walls needs to be incorporated within the self-consistent solu-

tion for fluctuation-induced mobility (i.e. incorporated into the solution of unknown

#1 and #2 described in the previous paragraph). This coupling exists for two main

reasons: 1.) wall effects have been hypothesized to be the source of instabilities such

as the two stream instability caused by secondary electron emission (SEE) from the

channel walls[23] or the sheath instability[27] and 2.) the effective collision frequency

due to collisions with walls depends on the large-angle scattering frequency within the

plasma, where the turbulence is responsible for an amount of directional scattering.

Some have used an empirical coefficient for the turbulent collision frequency in models

to account for the scattering due to turbulence so that an accurate electron flux to

the walls could be calculated[23], but no "closed form" solution has been employed

(where the turbulent collision frequency could be modified by the wall collision fre-

quency). To the author’s knowledge, the effect of the dielectric walls has not been

included in models predicting the growth of instabilities (for example the inclusion

of the SEE effects) and taken into account in turbulent mobility. In terms of experi-

mental research, separating the wall effects from fluctuation-induced mobility is not

possible in an operating Hall thruster. However, the effects of the SEE reflection from

the dielectric walls (explained in Section 3.3.2 and in Kaganovich et al.[23] may be

separated experimentally by an investigation such as the research presented herein.

Much of the focus of Hall thruster research has been on measuring and predicting

oscillations coupled with understanding the single-particle dynamics within the elec-

tric and magnetic fields of a Hall thruster. Ongoing modeling efforts in Hall thruster
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electron mobility have produced substantial results in the past decade mainly due to

an increase in computational power. However, it is thought that the research commu-

nity may benefit from isolating certain factors so as to understand a single contributor

alone, without the coupling that exists between hypothesized mechanisms for mobil-

ity. Isolating effects can never solve the non-linear effects that exist in a Hall thruster;

however, an attempt to simplify the plasma environment may be able to provide un-

derstanding of a single aspect exhaustively. For example, attempts have been made

to understand effects analogous to neoclassical mobility[55] in a Hall thruster and

to understand the contribution from SEE reflection from the dielectric walls, both

from a theoretical standpoint, but these effects can not be experimentally verified

in the Hall thruster environment. Experimental verification of these concepts is im-

possible in the complex environment of a Hall thruster as the fundamental physics

of the dominating mobility mechanisms is not well understood, so they cannot be

separated. However, a method is proposed in this work that would enable the study

of these fundamental concepts without these complicating/coupling factors so that

effects acting on a single particle level may be investigated.

The achievement of this work has been the observation of enhanced, non-classical

mobility in the Hall Electron Mobility Gage. The electron mobility apparatus was

constructed at Michigan Tech’s Ion Space Propulsion (Isp) Lab in order to study

electron dynamics in the defining electric and magnetic fields of a Hall-effect thruster

with the goal of understanding the mechanism(s) responsible for the observed anoma-

lous cross-field mobility. Measurements using the Hall Electron Mobility Gage have

demonstrated the ability to observe cross-field electron mobility, where the experi-

mental mobility has been found to be between the Bohm and classical predictions.

These results are confounding as the two most cited contributors to anomalous mo-

bility in Hall thrusters, dielectric wall effects and plasma fluctuations, were absent in

this device. The most significant deviation between a Hall thruster plasma and the

plasma in the Hall Electron Mobility Gage is that collective plasma effects such as
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waves and instabilities within the plasma theoretically cannot exist (as will be ex-

plained in Chapter 5, Section 5.2.1), such that any enhanced mobility will be due to

external parameters that are not internally coupled to the plasma environment. Di-

electric walls typically found in a Hall thruster also have been removed in this device,

where the plasma was confined using only electric and magnetic fields and collisions

with the physical geometry of the apparatus were found to be negligible (see Section

5.3). Since wall effects were absent and collective effects could not persist in this

plasma, investigating the mobility achieved three purposes. First, with this device

it was possible to investigate any effects not linked to fluctuation-induced mobility

(much like the insight achieved by O’Neil et al. in like-particle transport[35, 36]

or like Eggleston et al. in resonant particle transport[112, 114]) that are based on

geometry or static field conditions. In a Hall thruster discharge, the field conditions

are so internally coupled to the plasma environment (the sheath structure is likely

governed, at least in part, by the plasma oscillations and resulting cross-field trans-

port) that investigating this effect alone would be impossible. Second, the anomalous

mobility was examined in direct response to the external parameters without chang-

ing the plasma environment so that mobility versus E, B and neutral density could

be investigated for scaling trends. Finally, it was possible to control and measure

external fluctuations that could contribute to the plasma mobility such as externally

applying field perturbations or measuring and/or controlling fluctuations that arise

out of noise in electrical circuitry.

These observations suggested yet another transport mechanism that had not

previously been isolated or observed that enhances mobility in the geometry specific

to a Hall thruster. Therefore, a new mechanism for transport is proposed based on the

effects of the bounce motion– that is the thermal motion along radial magnetic field

lines as electrons oscillate between the inner and outer channel walls. At the "sheath"

edge in a Hall thruster, which is analogous to the inner and outer radii of the confining

volume in the Hall Electron Mobility Gage, the electric field changes drastically over
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a relatively small distance, and thus is non-constant over a cyclotron orbit; because

of this, standard drift equations that rely on the assumption of slowly varying electric

and magnetic fields relative to the cyclotron orbit no longer apply. While the reason

for the anomalous mobility is not known for certain, the available data shows that the

mobility is correlated with the electron bounce frequency within the radial potential

well. One hypothesized model to describe this mobility suggests that the electrons are

able to step a distance on the order of the Larmor radius with each reflection from

the confining field boundary. This type of behavior could be caused by cyclotron

orbit distortion, in which the electric and/or magnetic fields change within a time

period short compared with the gyro-time. In such fields, which are present near

the reflection points in the apparatus, the guiding-center model is not valid and it

is possible that particles entering this region with random gyro-phase exhibit a type

of specular reflection, similar to what would occur in a momentum transfer collision,

with a net motion of the guiding center in the direction of the applied electric field.

This type of approach, that is, the use of a low-density, uncoupled plasma to study

fundamental plasma processes, which has been utilized in Penning trap research for

insight into fusion plasma processes, has never been conducted in the Hall thruster

configuration.
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Chapter 4

Design & Fabrication of Device

4.1 Purpose & Overview of Design

Some of the challenges in studying anomalous cross-field mobility in Hall thrusters

(and in any device for that matter) were presented in Chapters 2 and 3. Historically,

the difficulty in plasma transport studies has been the coupling that exists between the

self-field of the plasma (including fluctuations) and the transport of the plasma. This

chapter presents the design of a new device, the Hall Electron Mobility Gage, (shown

in Fig. 4.1) which was designed as a diagnostic tool for investigating electron mobility

in Hall thruster fields. The purpose of the design of the Hall Electron Mobility Gage

was to replicate as many features of the Hall thruster environment as possible, while

simplifying the plasma environment. The plasma environment could be simplified by

1.) minimizing the coupling that exists between the plasma and the electric/magnetic

field structure, 2.) removing plasma oscillations, and 3.) removing the complex

interaction at the plasma-dielectric wall interface. In a Hall thruster the plasma self-

field, which is greatly influenced by the magnetic field, defines the shape and strength

of the electric field[11, 7, 115] (as described in Section 3.2) so that the magnetic and

electric fields cannot be varied independently. Removing this coupling would require a
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Figure 4.1: Photograph of the Hall Electron Mobility Gage (cathode elec-
trode and center front plate have been removed and are shown in the photo
laying in front of the apparatus). Orientation shown at the bottom right of
the figure. (Photo courtesy of Ref. [4])

low-density plasma so that the self-field could be regarded as negligible. Consequently,

the field conditions would be considered rigid and defined by the vacuum solution

and the electric field could conceivably be controlled independently of the magnetic

field. The plasma self-field also has been shown to define the nature of waves and

oscillations in a Hall thruster[55, 83] (as described in Section 3.3.3). A long Debye

length relative to plasma dimensions results in a plasma that is defined by thermal

motion of particles and cannot sustain collective oscillations on these length scales

(described in Section 2.1.3). Therefore, the goal in the design of the Mobility Gage was

to create a plasma with a long characteristic Debye length. This approach was also
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used by Eggleston et al. in modified Malmberg-Penning trap experiments to reduce

the collective effects that were postulated to enhance transport[108, 112]. Thus, in

reducing the density and increasing the Debye length, simplification #1 and #2 may

be achieved. The dielectric walls in a Hall thruster exist to insulate the discharge

channel from the magnetic circuit so that an axial electric field may be sustained over

the discharge channel. The dielectric walls also provide a physical barrier for radial

plasma confinement. However, the physics of the plasma-dielectric wall interface and

effects on cross-field mobility remain largely unknown[86, 23]. In order to remove

this complication (#3), the dielectric walls were not employed in the Hall Electron

Mobility Gage.

It was assumed a priori that the desired plasma environment (low density, long

Debye length) could be created∗. The design of the electric and magnetic fields relied

on this assumption, and the goal then became to recreate the defining Hall thruster

electric and magnetic fields in vacuum. The two challenges in creating these fields

in vacuum were first, to align the electric equipotentials and magnetic field lines and

second, to provide radial confinement without dielectric walls. (Both of these condi-

tions are achieved in a Hall thruster through the self-consistent plasma fields.) In the

design process the magnetic field was designed first to replicate the magnetic field of

a Hall thruster. The electric field was then created through contoured electrodes that

exactly match the magnetic field lines, so that equipotentials (which form parallel to

the electrodes) align with magnetic field lines. Radial confinement in the absence of

dielectric walls was achieved at the confinement volume periphery through the de-

parture of the vacuum electrostatic equipotential lines and magnetic field lines at the

inner and outer radii, which creates a confining electrostatic potential well. Sections

4.2 and 4.3 present the design of the magnetic and electric field, respectively. Section

4.4 presents a qualitative introduction to the radial confinement mechanism in the

absence of dielectric walls (which is presented analytically in Chapter 5). Section

∗Of course, the removal of the dielectric walls would provide no engineering difficulty, and this
ability was also assumed.
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4.5 presents the mechanism for trap loading. Some comments about the design are

presented in Section 4.6, including a set of criteria that will be addressed in the subse-

quent chapters to assess how well the design has met its purpose. The resulting plasma

environment and characteristic electron dynamics in the fields presented herein will

be explored in Section 5. The device is experimentally characterized in Chapter 6 to

assess the validity of the assumptions that are made a priori, which are discussed in

this chapter. Machine drawings of the physical structure of the Hall Electron Mobility

Gage may be found in Appendix A. Several of the design aspects presented in this

chapter have been previously reported elsewhere[116, 117, 118, 119, 120].

4.2 Magnetic Field

The magnetic field topology was designed to replicate that of a Hall thruster. The

Hall thruster magnetic circuit is based on a C-core design that has been rotated about

a center axis so that the vacuum gap creates an annular channel with a radial mag-

netic field between the inner and outer pole pieces. Similarly, the coaxial design of

the Hall Electron Mobility Gage employs Nc turns of windings around the inner and

outer core pieces where a current, Ic, supplied to these windings creates a magnetic

flux through the core material. Laboratory Hall thrusters commonly have the sin-

gle azimuthal outer coil geometry as is utilized in the Hall Electron Mobility Gage

(Fig. 4.2). However, flight scale Hall thrusters (shown in Fig. 1.1) often have four or

more cylindrical outer magnetic coils uniformly spaced around the periphery span-

ning the front and back plates that similarly induce magnetic flux but provide mass

savings over the strictly azimuthal geometry. The azimuthally symmetric geometry

was chosen in this case to ensure azimuthal uniformity and to improve reliability of

axisymmetric field models.

The magnetic field topology has been shown to have great importance in thruster
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Figure 4.2: Schematic of the defining features of a Hall thruster (top) and
the Hall Electron Mobility Gage including electric field creation and resulting
potential (qualitative).
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efficiency and operation†. The main features of a modern Hall thruster magnetic field

are the symmetry in the magnetic field lines about the channel centerline and the

concavity of the field lines (rather than strictly radial, as was exhibited in the early

Hall thruster designs[21]), which both create a point of minimum magnetic field at

channel centerline. This creates a magnetic mirror, as charged particles tend toward

areas of lower magnetic field, that confines the plasma at the center of the channel

and away from the dielectric walls (described more thoroughly in Section 2.1.1). It

was also found that for the stability of the plasma (ion) flow in the Hall thruster

the magnetic field should increase axially with distance from the anode[11]. These

features were captured in the design of the Hall Electron Mobility Gage. Figure 4.3

shows the shape of the core material and resulting magnetic field map where magnetic

field lines are superimposed on the magnetic field magnitude contour plot. Figure 4.4

shows the magnitude of the radial and axial magnetic field profile with axial distance

at the point of minimum magnetic field and at the inner and outer radii (location

of axial profile is shown in Fig. 4.3). Figure 4.4 shows the same axial profile of the

magnetic field for a NASA-173Mv1 Hall thruster[5]. In the Hall Electron Mobility

Gage the outer magnetic pole is beveled and the inner pole is thicker and un-beveled

(detailed dimensions are found in Appendix A, Figs. A.6 and A.7). Since the field

diverges radially there is naturally an enhanced magnetic mirror at the inner pole,

so the beveled outer pole enhances the field convergence, and consequently enhances

the magnetic mirror. The magnetic mirror has been found to play a role in Hall

thruster electron confinement[37, 82] and likewise serves to enhance the electrostatic

potential well confinement in the Hall Electron Mobility Gage (discussed qualitatively

in Section 4.5 and analytically in Section 5.3).

The area of interest for this research corresponds to the "acceleration" region of

a Hall thruster (noted in Fig. 4.2). The definition of the "acceleration" region varies

†Ref. [5] provides a study of Hall thruster operating parameters due to changes in magnetic
field. A good overview of the design criteria of the magnetic field in Hall thrusters, with respect to
efficiency of electron confinement, is outlined in Ref. [82].
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Figure 4.3: Magnetic field map for the cross section of the Hall Electron
Mobility Gage confinement volume; Locations r1, r2, and r3 correspond to
the location of the axial profiles shown in Fig. 4.4 and in Fig. 4.9.

but is often correlated with the axial region that captures the point of maximum radial

magnetic field and extends axially in both directions where the radial magnetic field

falls to 60-80 percent of maximum[34]. Unfortunately, because of the requirements

for confinement (explained in Section 4.5) it is not possible to examine the region

exactly centered about the maximum magnetic field in the Hall Electron Mobility

Gage; rather the confinement volume (bounded by the cathode electrode in Fig. 4.3)

starts at the magnetic field line extending just inside the pole pieces. This corresponds

to the point where the magnetic field is about 90 percent of maximum. The region

examined in the Hall Electron Mobility Gage extends from the point of 90 percent

of Bmax to the point where the field falls off to 60 percent of the maximum magnetic

field.

The magnetic poles were constructed of 1018 low-carbon steel, mainly due to the

relatively high magnetic permeability and commercial availability (iron purity 98.8%).

Other materials, such as magnetic iron (iron purity 99.95%) have a higher magnetic
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Figure 4.4: Axial profiles of the radial magnetic field (top) and axial mag-
netic field (bottom) for the Mobility Gage (left) and the NASA-173Mv1[5]
(right) taken at locations r1(dashed), r2 (solid), and r3 (dotted) correspond-
ing to the radial locations indicated in Fig. 4.3.

permeability but would have been cost prohibitive, and such materials were deemed

unnecessary at the early stages of development in this project. The B-H curve for

1018 low carbon steel is shown in Fig. 4.5.

As was presented in Section 3.2 the criteria for the magnetic field strength in a

Hall thruster is such that electrons are highly magnetized but ions are weakly affected

by the magnetic field. A magnetic field strength of 100 G clearly meets this criteria

in the Hall Electron Mobility Gage with a 1.7-mm electron Larmor radius (assuming

Te = 20 eV), which is much smaller than apparatus dimensions, and a 0.62-m ion

Larmor radius (for argon ions, assuming an ion velocity of 1.5×104 m/s calculated in

Section 5.2.3), which is much larger than apparatus dimensions. The inner and outer

magnetic coils have 620 and 310 turns, respectively. A coil current of 2.0 A (so that

the inner and outer coils are at 1240 Amp-turns and 620 Amp-turns, respectively)

results in a field strength of 100 G at the channel centerline. The magnetic core

material saturates when the magnetic field inside the material exceeds 1 T (10,000

G). The inner core material saturates to this point at ∼ 2000 Amp-turns on the
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Figure 4.5: B-H curve for 1018 Low Carbon Steel. (Data for this figure
obtained from Ref. [6])

inner coil; however, the outer pole does not reach saturation at ∼ 1000 Amp-turns

(corresponding to the same value of current). This results in a distortion of the field

shape instead of just an (intended) change in the field magnitude if the inner and

outer Amp-turns are increased proportionally past the current where the inner core

material saturates. Therefore, when the inner pole saturates (where large increases

in applied field correspond to small increases in magnetization) the current on the

inner windings must be increased at a greater rate than that on the outer windings in

order to preserve the field shape while increasing its magnitude. Using the B-H curve

shown in Fig. 4.5, it was possible to simulate the effect of magnetic saturation using

the magnetic field solver, Maxwell SV[121]. Figure 4.6 shows the saturation of the

inner core material. The resulting "ideal" inner and outer magnetic coil Amp-turns

are plotted in Fig. 4.7, which eliminate any field distortion. (This tuning procedure

was also published in part in Ref. [118]. Experimental verification of the "optimal"
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Figure 4.6: Magnetic field model for the Hall Electron Mobility Gage show-
ing magnetic saturation of the inner core material with 2000 Amp-turns on
the inner coil and 1000 Amp-turns out the outer coil.

inner and outer coil currents is presented in Section 6.2.1.)

The design of the device was created to be as large as possible while remaining

within practical limitations (e.g. availability of materials and in-house fabrication).

The design resulted in apparatus dimensions being about four times larger than a

typical 1.5 kW Hall thruster‡. The objective of the geometrical size was to enable

trap operation over a greater range of magnetic fields (lower) without the electron

Larmor radius approaching apparatus dimensions. The inequality shown in Eq. (4.1)

represents the condition that the Larmor radius (Eq. (2.2)) be much smaller than

the electrode spacing (∆za−c), so that the electrode spacing axially extends several

gyro-orbits.

∆za−c ≫ meu⊥
qBr

(4.1)

Since one goal of this work was to explore mobility trends over a range of magnetic

fields, and material constraints prevented magnetic fields above about 200 G, a Hall

‡SPT-100, BPT-2000 or other similar type Hall thrusters[9]
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thruster-sized device was not feasible, as the range of magnetic fields would be severely

limited while maintaining the inequality of Eq. (4.1). Therefore, to extend the range

of magnetic fields, the size of the Hall Electron Mobility Gage was increased to the

limits of in-house fabrication. In this configuration, a magnetic field of ∼ 50 G would

result in a Larmor radius (3 mm for Te = 20 eV) that is an order of magnitude

smaller than the electrode spacing (30 mm), allowing the inequality of Eq. (4.1) to

be maintained over the range of 50 G< B < 200 G, which provides the limits of the

magnetic field within the Mobility Gage.

4.3 Electric Field

In the Hall thruster environment the electric field is highly dependent on the plasma

response to the magnetic field. A cartoon schematic representing the electric field

creation and potential structure in a Hall thruster is shown in Fig. 4.2. The elec-
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tric potential structure and resulting field for a Hall thruster are shown in Fig. 4.8.

Electrons are highly mobile along magnetic field lines so any applied potential will be

immediately equalized by rapid electron motion along the magnetic field lines; there-

fore, magnetic field lines are often approximated as electric equipotential lines[11].

Electrons are significantly impeded axially in their motion across magnetic field lines

so that large electric potential gradients may be supported perpendicular to the mag-

netic field. Minimizing the coupling between the electric and magnetic fields in the

Hall Electron Mobility Gage requires the plasma density to be many orders of magni-

tude lower than that which is found in a Hall thruster, so that there would be negligible

plasma contribution to the applied electric field (see Section 5.2.1). Assuming this

criterion could be met, the electric field was regarded as (nearly) equivalent to the

vacuum solution which, in effect, would separate the electric and magnetic fields into

two separate independent variables. The challenge then lay in creating the potential

structure and resulting electric field, analogous to the complex Hall thruster plasma

field, in vacuum. The vacuum electric field was required to meet the following goals:

1.) to create lines of electric equipotential coincident with magnetic field lines and

2.) to emulate the negative sheath structure that exists at the dielectric walls of a

thruster to provide radial confinement.

It was found that both of these criteria could be achieved through the utilization

of contoured electrodes. The curved electrodes would create curved equipotential

lines that would coincide with the magnetic field contours. The sheath was replicated

through the departure of electric equipotential lines and magnetic field lines at the

periphery of the confinement volume, which would create a confining electric field

parallel to magnetic field lines much like that of the Hall thruster sheath. The sheath

and confining structure is discussed in more detail in Section 4.4 and the focus of

this section is on the creation of the electric field for the bulk of the confinement

volume. As described in Section 4.2, the magnetic field was modeled to replicate

the acceleration region of a Hall thruster. A magnetic/electric field solver, Maxwell
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Figure 4.8: Electric equipotentials shown as color contours with superim-
posed magnetic field lines (black) for the cross section of the Hall Electron
Mobility Gage confinement volume; points (z1), (z2) and (z3) correspond to
the locations of the potential well profiles shown in Fig. 4.10.

SV[121], was used to map the field lines, and physical electrodes were designed such

that the electrode surfaces were coincident with local magnetic field lines. Figure

4.8 shows the contoured electrodes and the magnetic field lines superimposed on

the electric equipotential lines. With the contoured electrode structure, the electric

equipotential lines (surfaces) would extend parallel to the electrodes such that the

magnetic field lines and equipotential lines coincide. In this configuration electrons

would be thermally mobile along field lines with their guiding center paths parallel

to the electrode contours. The x-y pairs for the electrode contours are presented in

Table 4.3.

The coordinates for the contours were transferred into a solid modeling program

(IDEAS) so that 3-D solid models of the electrodes could be created computationally.

Using the IDEAS solid model, a CNC tool path was generated within IDEAS in order

to machine each electrode contour, which were physically milled using a Haas R©4-axis

CNC mill. The physical electrodes were then smoothed and polished on a manual
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Table 4.1: (x,y) pairs for anode and cathode electrode contours; origin is
defined at the center (axial and radial) of the inner magnetic pole

x (mm) Anode, y (mm) Cathode, y (mm)

111.5 53.38 73.38
115.5 49.53 71.27
119.5 46.32 69.41
123.5 43.55 67.89
127.5 41.19 66.61
131.5 39.16 65.55
135.5 37.39 64.68
139.5 35.92 63.98
143.5 34.71 63.44
147.5 33.78 63.07
151.5 33.09 62.84
155.5 32.63 62.74
159.5 32.38 62.78
163.5 32.29 62.95
167.5 32.53 63.27
171.5 33.04 63.73
175.5 33.80 64.33
179.5 34.83 65.06
183.5 36.13 65.92
187.5 37.69 66.93
191.1 39.38 68.07
195.5 41.76 69.36
199.5 44.20 70.84
203.5 47.11 72.57
207.5 50.45 74.76
209.5 52.34 76.01

lathe. (A photograph of the finished electrodes can be seen in Fig. 4.1) The resulting

anode and cathode electrode surfaces precisely match the magnetic field contours

created by the magnetic poles as shown in Fig. 4.8.

The choice of the axial location within the magnetic field structure for the parallel

plates was described in Section 4.2. The anode electrode was placed at the point where

the magnetic field had dropped to 60 percent of the maximum magnetic field. The
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cathode electrode was placed at the point where the magnetic field was at 90 percent

of maximum, which was necessary for the confinement scheme, as described in Section

4.4. In this configuration the electrode spacing would be ∼ 30 mm. In order to create

an electric field of 2 − 40 V/mm typically found in Hall thrusters (2-10 V/mm was

cited in Ref. [71], ∼ 5 V/mm in Ref. [23], 20 V/mm in Ref. [5], and up to 40 V/mm

in Ref. [7]), a potential difference of 50-1200 V would need to be applied between

the anode and cathode electrodes. However, power supply availability limited the

anode-to-cathode voltage to 600 V and preliminary experiments showed significant

arcing at fields above 300 V. Therefore, for most of the experiments presented herein,

the anode-to-cathode voltage was kept in the range 50 V < Vac < 300 V. The axial

profile of potential and axial electric field are shown in Fig. 4.9 for Vac = 100 V

where the profiles were obtained at radial locations corresponding to locations (r1),

(r2), and (r3) indicated on Fig. 4.3. Axial profiles of potential and electric field for

the SPT-P5 Laboratory Hall thruster[7] at various radial locations are also shown for

comparison. The term "local" potential, used frequently throughout this document,

refers to the unperturbed vacuum potential found from the electrostatic field solver.

For example if the emission filament (described in Section 4.5) is said to be biased to

"local" potential, its bias is set to match the potential of the vacuum solution at the

location of the filament. It follows then that "local" potential at a particular location

changes proportionally with the applied anode-to-cathode potential.

4.4 Radial Confinement

In the discharge channel of a Hall thruster a negative sheath exists at the dielectric

walls that serves to repel the bulk of electrons from the walls and confine them to the

channel annulus. This sheath is emulated in the Hall Electron Mobility Gage through

the departure of electric equipotential and magnetic field lines at the confinement

volume periphery. The departure is shown in Fig. 4.8 and the rationale for the sheath
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Figure 4.9: Axial profile of electric potential (×’s) and electric field (solid)
for the Hall Electron Mobility Gage (left) for the axial profile at radial lo-
cation r1 (top), r2 (middle), and r3 (bottom) indicated in Fig. 4.3 and the
axial profile of electric potential (◦’s) and electric field (solid) for an SPT-P5
Hall Thruster (right)[7].

analogy is described qualitatively in the following argument. Since electrons are

constrained to follow B-field lines (between collisions), they have a point of minimum

potential energy at the center of the confining volume where the B-field is coincident

with the electric equipotentials. As an electron travels from this region towards either

edge of the confinement volume, the electric potential decreases as the magnetic

field lines depart from the electric equipotentials. This repels electrons from the

confinement volume periphery to the center of the confinement volume as an electric

field exists along the magnetic field line (E · b̂ 6= 0) that acts to decelerate the

parallel velocity, v‖. The magnetic field lines passing through the confinement volume

terminate on the iron pole pieces, which are held at cathode potential, thus the total
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potential difference from trap center to trap edge along a B-field line (where the

magnetic field lines intersect the pole) represents the depth of the confining potential

well.

Consider, for instance, an electron constrained to the B-field line that is coinci-

dent with the 60 V equipotential at trap center (point (z3) in Fig. 4.8). In order to

impact the iron pole at the trap periphery, the electron must climb a 60-V potential

hill because the electron is constrained to the magnetic field line. Therefore, an elec-

tron on the magnetic field line at 60 V in the center of the confining volume would be

in a 60-eV electrostatic potential well. Because an electron at this location can have

no more total kinetic energy than 60 eV, based on the loading mechanism described

in Section 4.5, it is clear that this potential well would reflect the bulk of electrons to

the center of the confinement volume and only the electrons in the high energy tail

of the Maxwellian distribution could overcome the confining potential. This is also

described in more detail in Section 5.2 in an analysis of radial confinement time. This

confinement is analogous to the confinement due to the negative sheath on the dielec-

tric walls of a Hall thruster, where only the high-energy electrons are able to overcome

this potential and are lost to the walls. (For all the tests reported in this work the

cathode and magnetic pole pieces are electrically connected as is represented in Fig.

4.8. However, the two can be electrically isolated if differing electric field conditions

are desired in future experiments.)

Quantitatively the potential well provided by the parallel electric field can be

described by integrating the forces acting parallel to B along the length of a magnetic

field line from the inner magnetic core material to the outer magnetic core material.

The force due to the electric field was found to be much more significant than any

other force acting on the electron parallel to the magnetic field (centrifugal force due

to the E×B drift and magnetic mirror force explained in Section 2.1.1) and thus the

centrifugal and magnetic mirror forces were neglected in this analysis. This analysis

of potential well was published in part in Ref. [118]. The along-field potential was
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Figure 4.10: "Along-field" potential well for magnetic field lines intersecting
locations z1 (top), z2 (middle) and z3 (bottom) in Fig. 4.8.

determined by the equation

Φeff (r) =

∫

F
E·b̂dr (4.2)

where Φeff is the effective potential well and F
E·b̂ is given by

F
E·b̂ = q(E · b̂) (4.3)

Figure 4.10 shows the "along-field" potential well for the magnetic field lines inter-
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secting locations (z1), (z2), and (z3) in Fig. 4.8. It is shown in Fig. 4.10 that the

well depth of (z1), (z2), and (z3) equals the potential difference between the vacuum

potential at each location, Vlocal(10 V, 30 V, 60 V, respectively), and the potential of

the cathode. It can also be seen by Figure 4.10 that the effective potential of the well

is relatively "flat" over the bulk of the confinement volume indicating that electrons

experience mostly thermal motion (E · b̂ ∼ 0) and are only strongly reflected at the

edges of the confinement volume where E · b̂ 6= 0. This example is for Vac = 100 V;

however, this holds true for all electric fields at all locations.

4.5 Electron Loading

The goal of the trap loading mechanism was to emit low energy electrons at a point

within the potential well so that the majority of emitted electrons could be confined

within the trapping volume (as opposed to injecting electrons from outside the po-

tential well, which could then gain enough energy falling into the potential to escape

through the opposite side of the well). This was achieved by placing a thermionically

emitting filament entirely within the confining volume at a finite distance from the

cathode (as opposed to coincident with the cathode where there would be no potential

well) and positioning it on channel centerline, so that electrons were injected at the

minimum of the potential well.

The filament that was used consisted of a single square loop of 5 mil (0.005 in.;

0.127 mm) thoriated tungsten wire where the wire ends were compression fitted into a

twin-bore alumina tube to make electrical contact with copper leads. The end of the

alumina tubing was coated with an electrically insulating ceramic adhesive (Resbond

919 High Resistance Ceramic Adhesive and Potting Compound) covering the filament

insertion points and leaving a small horizontal length of the filament exposed (∼ 3.5

mm). The resistance across the exposed wire is ∼ 0.1 Ω corresponding to a voltage
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Figure 4.11: Schematic of the electron loading filament.

drop of ∼ 250 mV for a typical heater current of 2.5 A. The effect of this voltage drop

is negligible in the operation of the Hall Electron Mobility Gage as will be discussed

in Section 6.3.5 in a characterization of the electron loading mechanism. The alumina

tube was inserted through an aperture in the cathode electrode and secured in place

using a setscrew where the emission filament was located ∼ 3 mm from the cathode

surface for most experiments. A schematic of the filament is shown in Fig. 4.11.

Thoriated tungsten is often used for electron emission purposes due to its rela-

tively low work function of 2.6 eV (i.e. the energy required to liberate an electron

from the surface of the metal). The relation of emission current, temperature and

work function, is given by the Richardson-Dushman equation:

J = AT 2 exp
(

− ϕ

kT

)

(4.4)

where J is the emission current density, T is the absolute temperature (K), ϕ is the
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work function, k is Boltzmann’s constant, and A is Richardson’s constant given by:

A =
4πmek

2e

h3
= 1.20173 × 106 Am−2K−2 (4.5)

Here, me is the electron mass, e is the elementary charge and h is Planck’s constant.

The Richardson-Dushman equation is given for the emission in the zero-field case.

However, if an external electric field is present (as would be the case in the Hall

Electron Mobility Gage), the field enhances the emission and the thermionic emission

equation is modified to be

J = AT 2 exp

(

−(ϕ− ∆ϕ)

kT

)

(4.6)

where ∆ϕ serves to reduce the work function and is given by

∆ϕ =

√

e3E

4πǫ0
(4.7)

where ǫ0 is the vacuum permittivity and E is the applied external electric field.

An isolated DC heater circuit was employed to heat the filament so that electrons

would be thermally emitted from the tungsten surface. Within the Hall Electron

Mobility Gage the filament is in the presence of an axial electric field. To determine

the accelerating electric field, in order to compute ∆ϕ, a numerical solution was

obtained using Maxwell SV[121] for the filament held at "local" potential§ as well

as at 15V above local potential (electron attracting), and 15 V below local potential

(electron repelling), which are both presented in Fig. 4.12. It is seen that even when

the filament is above the "local" unperturbed potential there still exists an electric

field serving to accelerate the electrons from the filament toward the anode, although

this field is made weaker as bias potential is increased. The accelerating electric field

§The "local" unperturbed vacuum potential could be determined from the Maxwell SV[121]
numerical solution in absence of the filament.
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Figure 4.12: The potential structure in the presence of the filament (left)
and the resulting electric field (right) for the filament biased to cathode
potential (top), "local" potential (center) and 15 V above "local" potential
(bottom), for an anode-to-cathode voltage of 100 V.
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directly below the filament (serving to assist electron emission) is 3.9× 103 V/m and

1.3 × 103 V/m, for the filament biased to "local" potential and 15 V above local

potential, respectively. The field is 5.6× 103 V/m for the filament biased 15 V below

local potential. For these fields the field-assisted emission is small, where ∆ϕ ∼ 0.001

eV and provides very little modification to the work function. Since the emission is

highly dependent on the temperature (shown in Eq. (4.7)) and barely modified by

the electric field it was assumed a priori that a heater current could be used to control

the electron emission current and thus density within the confinement volume (see

Section 6.3.2 for a characterization of emission current and resulting electron density

within the confinement volume).

The I-V characteristics of the emission filament differs from an emitting fila-

ment in a dense plasma (such as an emissive probe typically used to measure plasma

potential[122]). The shielding provided in a dense plasma would reflect low energy

electrons back to the filament if the filament were biased above local potential so

that electron emission could be negated at biases (with respect to local potential) on

the order of the emitted electron temperature. Electron emission in the Hall Elec-

tron Mobility Gage would not be eliminated under the same conditions due to the

long Debye length and absence of shielding. If the filament were biased to "local"

potential, the perturbation due to the presence of the filament would be minimized.

The emitted electrons were assumed to have < 1 eV of energy at the surface of

the filament upon emission, where this assumption was based on the experimental

emission data of Hutson[123]. If electrons could be emitted in a potential well deeper

than this, they would be confined. Equation (4.2) was used to determine the potential

well at the location of the filament (for the case of Vac = 100 V), which is shown in

Fig. 4.13. At the lowest field strength of Vac = 50 V (and thus the smallest potential

well), at a distance 3 mm from the cathode, the potential well is > 5 eV so that

confinement would be achieved. Electrons gain energy quickly as they are accelerated

by the electric field from the filament. However, the gain in energy corresponds to
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Figure 4.13: The potential well at the location of the filament for an anode-
to-cathode voltage of 100 V.

an axial displacement where the depth of the potential well increases at the same

rate of energy gain. Therefore, in terms of the example presented in Section 4.4,

electrons that have reached point z3 (local potential of 60 V) have fallen through a

potential of V (z3) − V (filament) = 60 V−10 V= 50 V. Electrons then have energy

ǫ(z3)− ǫ(filament)+ ǫ(initial) < 51 eV and yet are confined by a 60 eV potential well.

Confinement considerations will be explored more thoroughly in Section 5.2.

4.6 Design Comments

This chapter contains the design of the physical apparatus that will be analytically

and experimentally characterized in the following chapters. The ultimate goal was

to create a device where it would be possible to vary the electric field, magnetic field

and neutral density independently in order to observe the trends of transport in a
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Hall-thruster-like environment. The following assumptions were made a priori that

require validation both through analytical and experimental means. First, the most

notable assumption was that the plasma density within the confinement volume could

be sufficiently low so that the electric field could be considered rigid and prescribed

by the vacuum field of the physical electrodes. If this criterion is met, the electric

field may be explicitly controlled independent of other parameters as described in

Section 4.3. This assumption will be presented analytically in Chapter 5 and exper-

imentally verified in Chapter 6. Second, it was assumed that the bulk of electrons

could be confined electrostatically so that the confinement would be analogous to

the confinement provided by the negative sheath at the surface of the dielectric walls

in a Hall thruster. This assumption will be examined analytically in an analysis of

confinement and losses in Chapter 5, which allows for removal of the complicated,

dynamic structure of the negative sheath and replaces it with an explicitly known

field environment. Upon meeting these criteria the controlled parameters, especially

of electric and magnetic field, would be uncoupled and may be varied independently

for electron mobility investigations.
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Chapter 5

Analytical Characterization

5.1 Introduction

The purpose of this chapter is to present the relevant plasma properties and dynamics

of electrons in the Hall Electron Mobility Gage and compare them to those of Hall

thrusters. The plasma created in the Mobility Gage is intended to be different from

a Hall thruster plasma in ways that would simplify the experimental observations of

transport by isolating variable parameters that affect mobility. A similar attempt

to simplify the plasma environment was made by by Eggleston[112] in Penning trap

research. In reducing the plasma density by two orders of magnitude and using

an externally applied field to simulate the mutually repelling self-field of the non-

neutral plasma, Eggleston was able to eliminate the collective plasma effects in order

to study fundamental particle motion in the Penning trap. In Eggleston’s work,

the plasma density was reduced for the same reasons presented herein: to simplify

the plasma environment and remove complicating non-linear collective plasma effects

such as self-sustaining waves and oscillations. The plasma environment of Eggleston’s

work was significantly different than that of the Penning trap to which Eggleston

compares his findings, and both are vastly different from fusion plasmas, but relevant
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discoveries have been made in fundamental plasma transport that correlate between

the simplified and more complex plasma environments despite the differing plasma

properties[109, 124, 110, 125]. In the same way, the goal in this research is to gain

insight into fundamental transport processes in Hall thruster fields by investigating a

low-density, non-neutral plasma and identifying fundamental transport processes that

may be applicable to the Hall thruster plasma environment. This chapter presents

the plasma properties of the Hall Electron Mobility Gage, contrasts them with a Hall

thruster, and yet identifies processes which are similar fundamentally.

By Chen’s definition (Section 1.4-1.6 of Ref. [38]), the collection of charged

particles in this device is loosely defined as a "plasma." The first criterion given

by Chen is that the plasma must be many Debye lengths in size. In this device,

for the range of electron densities and temperatures considered, the Debye length

is much longer than any other characteristic dimension (described in Section 5.2.2),

violating this criterion. The requirement of many Debye lengths allows a plasma to

be described by its collective aspects (presented in Section 2.1.3), where on length

scales small compared to the Debye length, particles must be described by individual

particle trajectories. The violation of this criterion then signifies the removal of the

collective plasma behavior responsible for sustaining waves and oscillations. Chen’s

second criterion is that a large number of particles are contained within a sphere of

radius Debye length (i.e. a Debye sphere). The number of particles contained in a

Debye sphere is ∼ 1×109 −1×1011 meeting this criterion. The final criterion is that

the plasma frequency be much greater than the electron-neutral collision frequency.

The plasma frequency is orders of magnitude higher than the electron-neutral collision

frequency in the Hall Electron Mobility Gage. This criterion may also be interpreted

to mean that the mean collision time (and mean free path) is long for electron-neutral

collisions and that particle motion is defined by the response to electric and magnetic

fields rather than by "nearest-neighbor" interactions as in a neutral gas. This criterion

is met in the plasma of the Hall Electron Mobility Gage, where the mean free path
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between electron-neutral collisions is much longer than inter-particle spacing and any

other characteristic dimension of the device. Chen does not include relative ion and

electron densities in the definition of plasma but often quasi-neutrality is assumed

when considering Debye shielding and plasma frequency, among other characteristics.

The specific intention in the Hall Electron Mobility Gage investigations was to create

a low-density plasma, by externally supplying electrons (rather than through a gas

discharge) where the electron density may, at times, be significantly greater than the

ion density. Davidson[58] shows that confined non-neutral plasmas exhibit the same

collective phenomena where properties such as Debye length (which is an important

quantity for the Hall Electron Mobility Gage, see Section 5.2.1) and plasma frequency

are equivalently defined so that plasma characteristics may be applied regardless of

quasi-neutrality. In light of these criteria, the term "plasma" is used rather broadly

with respect to the Hall Electron Mobility Gage to describe the collection of charged

particles contained within the trapping volume.

The remainder of this chapter is organized into three sections, the first being the

nature of the plasma in this device, the second being the dynamics of the confined

plasma, and the third being the relevance to Hall thrusters. The most significant

property of the plasma in this device is a long Debye length, which has several con-

sequences that will be described in Section 5.2 (briefly described in the preceding

paragraph). Other properties of the plasma in this device are presented in Section

5.2, such as self-fields and relevant collision processes, which have consequences for

theoretical comparisons, diagnostics, and radial confinement. Section 5.3 investigates

the characteristic electron motion within the device including relevant time and length

scales and radial trapping characteristics. Also in this section, an analysis of confine-

ment time is presented, based on collisions that would enable electrons to exit the

trap radially; it is important to determine the radial confinement time to ensure that

the dominant electron flux is axial in the Hall Electron Mobility Gage, especially

considering the absence of dielectric walls which provide a physical barrier to radial
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Table 5.1: Comparison of plasma parameters and collision frequencies in
the Hall Electron Mobility Gage and a Hall Thruster (SPT-100, BPT-2000
or similar[9])

Parameter Mobility Gage Hall Thruster

Density
Electron 109 − 1011 m−3 ∼ 1018 m−3

Neutral 1016 − 1018 m−3 1018 − 1021 m−3

Ion < 1011 m−3 ∼ 1018 m−3

Electron Temperature 10 − 40 eV 10 − 30 eV
Debye Length 0.100 − 1.5 m 10−5 − 10−4 m
Collision Frequency

Electron-Neutral 103 − 105 s−1 105 − 108 s−1

Electron-Ion 10−2 − 10−1 s−1 105 − 106 s−1

Electron-Wall negligible 105 − 108 s−1

Turbulent negligible (?) 106 s−1

Fields
Electric 1 × 103 − 1 × 104 V/m 2 × 103 − 4 × 104 V/m
Magnetic 0.005 − 0.018 T ∼ 0.016 T

E ×B Drift Velocity 1 × 105 − 1 × 106 m/s ∼ 2.5 × 106 m/s
Channel Dimensions

Inner Radius 110 mm 35 mm
Outer Radius 210 mm 50 mm
Channel Width 100 mm 15 mm

Dynamical Frequency
Cyclotron (Larmor) ∼ 2 × 109 s−1 (3 × 108 Hz) ∼ 2 × 109 s−1 (3 × 108 Hz)
Bounce 1 × 107 Hz 1 × 108 Hz
Magnetron 1 × 105 − 1 × 106 Hz 8 × 106 Hz

Thrust 0 mN ∼ 80 mN

flux in typical Hall thrusters. The plasma parameters and collision frequencies of the

Hall Electron Mobility Gage are presented in Table 5.1 and for comparison, the same

parameters are presented for the plasma in the discharge channel of a Hall thruster[9].

Finally, the electron motion within the Hall Electron Mobility Gage is compared with

the electron motion in Hall thrusters, showing similar dynamics, despite the substan-

tially dissimilar plasma properties.
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5.2 Plasma Parameters

5.2.1 Debye Length

The scaling of the Debye length with other characteristic length scales is of utmost

importance when considering self-fields and collective effects such as waves and os-

cillations within the Hall Electron Mobility Gage. In the non-neutral plasma of the

Hall Electron Mobility Gage for the conditions of 10 eV< Te <40 eV (Section 6.3.3);

1×109m−3 < ne < 1×1011m−3 (Section 6.3.2) the Debye length (given by Eq. (2.10))

is in the range of 0.100 m< λD <1.50 m. In all cases the Debye length is on the order

of or larger than the characteristic dimensions of the electron trap, as the channel

width is 0.100 m and spacing between the electrodes is 0.03 m. Only when electrons

first enter the trapping volume at energies ∼ 1 eV is the Debye length less than the

channel width. In this case electrons gain energy quickly as the field is typically 2-

10 V/mm and the Debye length would quickly become larger than trap dimensions

outside the immediate vicinity of the trap-loading filament.

There are several consequences to having a long Debye length with respect to

plasma dimensions. The most obvious consequence is that external electric fields

may penetrate the plasma, as there is no Debye shielding. This fact may suggest that

long-range Coulomb forces are important (discussed in Section 5.2.3) as the Coulomb

interaction between individual particles is unshielded. However, the dependence of

the Coulomb collision cross-section on Debye length (as presented in Section 2.1.2) is

logarithmic. The weak, logarithmic dependence and the fact that neutral density is

much greater than charged particle density renders Coulomb collisions insignificant,

as presented quantitatively in Section 5.2.2. The absence of shielding indicates that

the applied external electric field is not significantly shielded by the plasma and thus

may be considered rigid and is given by the vacuum solution. This indicates that

the plasma contribution to the electric field is negligible, which allows the electric
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field to be externally controlled independent of other parameters, most importantly

independent of the magnetic field.

A second consequence of the long Debye length concerns collective effects in the

plasma. Plasmas exhibit collective behavior such as oscillations and the propagation

of waves through the plasma. Because of the properties of the plasma in the Hall

Electron Mobility Gage, these plasma behaviors cannot be sustained based on the

description presented in Section 2.1.3. It is shown in Section 2.1.3 that the thermal

motion of individual particles acts to oppose waves and collective effects where the

separation of phenomena (thermal versus collective) exists at the Debye length[57].

On length scales short relative to the Debye length, as in the Hall Electron Mobility

Gage, thermal effects dominate the motion and act to damp out any collective oscilla-

tions. This is realized by the inequality of Eq. (2.28), in that waves with wavelength

shorter than the Debye length will not be sustained by the plasma. Thus, particle mo-

tion is governed primarily by thermal motion of particles in externally applied fields.

This fact has important implications concerning plasma waves and collective plasma

effects that may be sustained within the Hall Electron Mobility Gage. Fundamen-

tally, a long Debye length does not permit sustained plasma waves to exist within

the Mobility Gage, an attribute that is imperative in simplifying the plasma envi-

ronment. Thus, the low-density, high-temperature plasma and resulting long Debye

length achieves two purposes in simplifying the Hall thruster plasma environment:

1.) in allowing the electric field to be controlled independently of the magnetic field

and 2.) in negating the possibility of fluctuation-induced transport.

5.2.2 Plasma Self-fields

The relative density of electrons and ions is important in determining the space-charge

fields experienced by the plasma. Plasmas generally tend to quasi-neutrality where
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the ion density is often assumed to be equal to the electron density∗. However, if a

charged species is introduced into the system from an external source or a species

is removed from the system, and the plasma is confined by electric and/or magnetic

fields, the plasma may violate quasi-neutrality. The absence of shielding ions results

in a self-field (i.e. electrons always repel each other).

In the Hall Electron Mobility Gage external electrons are supplied to the trapping

volume, and if no ionizing collisions take place, the plasma will be considered a one-

component plasma. If electrons are able to obtain sufficient energy (greater than the

ionization potential) from the applied electric field they may suffer ionizing collisions

with background neutrals. The ionization potential of argon is 15.7 eV[3], which is the

background gas (neutral density 1016 to 1018 m−3) used in the experiments presented

herein (shown in Fig. 2.4). The total energy available from the electric field is

50-300 eV, which greatly exceeds the ionization potential. Because the energy for

ionization is available, the ion density may vary greatly, depending on the conditions

of pressure, which governs the mean free path, λm, for electron-neutral collisions, and

magnetic field, which governs the filament-to-anode path length, ℓf−a, of electrons in

the trapping volume. The ion density also may vary depending on the electric field as

greater energy is available to primary electrons and also to electrons born in ionizing

collisions.

The probability for ionization will be highly dependent on the parameters of

pressure, electric and magnetic field. At low pressures and no magnetic field the

probability of an electron suffering a collision in the electrode spacing of the confine-

ment volume is extremely small. This may be realized by comparing the mean free

path for electron-neutral collisions, λm, with the filament-to-anode path length, ℓf−a.

The mean free path for electron-neutral collisions for the lowest pressures investigated,

λm = 1/(n0σ), is greater than 300 m, which is nearly five orders of magnitude larger

∗Section 3.6 of Ref. [38] provides a good explanation of the applicability of the plasma approxi-
mation.
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than the anode-cathode electrode spacing. If electrons are unmagnetized they travel

on straight-line trajectories from the filament to the anode (a distance of ℓf−a = 0.03

m), so there is negligible chance of ionization. In these conditions the relative ion

density is expected to be insignificant and the plasma is considered non-neutral (most

likely a one-component plasma)†.

Increasing the magnetic field to the point where electrons are magnetized in-

creases ℓf−a in the Hall Electron Mobility Gage, where the application of a mag-

netic field causes electrons to gyrate perpendicular to the magnetic field and drift

azimuthally due to the E × B drift. The axial velocity is significantly impeded so

that the filament-to-anode path length could approach the mean free path for electron-

neutral collisions. The increased path length results in a much higher probability for

ionizing collisions. In the limit of strictly classical mobility, the filament-to-anode

path length, ℓf−a, of magnetized electrons in the Hall Electron Mobility Gage must

be greater than or equal to the mean free path for electron-neutral collisions, since

theoretically electrons are trapped by the magnetic field and will travel within the

confinement volume indefinitely until a collision occurs. Even in the case of non-

classical mobility it is well known across several disciplines that magnetized electrons

in the closed drift have much longer paths than unmagnetized electrons, which would

increase probability of ionization[126, 127, 23]. The path length for electrons in the

case of anomalous mobility depends highly on the mechanism driving mobility but

most anomalous mobility coefficients are found to be at least inversely proportional

to B (i.e. an increase in B reduces mobility, which results in a longer confinement

time and thus a longer filament-to-anode path length, ℓf−a).

Increasing the pressure significantly increases the probability for ionizing colli-

sions by reducing the mean free path, λm, for electron-neutral collisions. The highest

pressures investigated result in a λm of 1 m, which is still much larger than the

†This is loosely described as a plasma as there is no confinement and the plasma body consists
only of an electron beam.
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anode to cathode electrode spacing, but given an applied magnetic field, this is on

the order of the length of an E × B "magnetron" orbit around the channel annulus

or on the order of 10 radial "bounces" from the inner radius to outer radius of the

annulus along a magnetic field line. (Particle dynamics are discussed in greater detail

in Section 5.3.)

Depending on the parameters of pressure, electric field, and magnetic field, the

plasma in the Hall Electron Mobility Gage may violate quasi-neutrality, where a

space-charge field would exist due to the absence of shielding ions. In the lowest

pressures investigated, ionization is expected to be negligible, where the electron self-

field would be the greatest. The magnitude of the induced negative space charge is

found from a solution to the Poisson equation,

∇2Φ =
ρ

ǫ0
=

qene + qini

ǫ0
(5.1)

where Φ is the electric potential and ǫ0 is the vacuum permittivity. The Poisson

equation is generally not used to determine plasma potential in quasi-neutral plasmas

(Section 3.6 in Ref. [38]) because of the tendency for plasmas to maintain neutrality

except on short time scales. However, the Poisson equation is applicable to non-

neutral plasmas[58] because of the strong violation of neutrality due to the collection

of like charges.

In the case of low neutral pressure, ion density is assumed to be zero and the

Poisson equation becomes

∇2Φ =
ρ

ǫ0
=

qene (r)

ǫ0
(5.2)

This analysis presents an upper bound to the space-charge field because the ion

density in this argument is assumed to be zero. As described above, ionization is

expected to occur under certain conditions, where the presence of ions would act
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to reduce the space-charge repulsion. Since the experiments in the Hall Electron

Mobility Gage are sensitive primarily to the radial space-charge field (the axial space-

charge field is a negligible contribution to the applied electric field), the geometry is

approximated as a cylindrical annulus infinite in the z-dimension with inner radius

rin and outer radius rout. Thus, the potential becomes a function of radius only due

to symmetry in θ and z. If the electron density is assumed to be constant over the

volume of the annulus (i.e. ne(r) = const. rin < r < rout) then, integrating Eq.

(5.1) twice in cylindrical coordinates (and dividing by ne), the space-charge potential

becomes
Φ

ne
=

q

4ǫ0

[

r2
out − r2 +

(

r2
out − r2

in

ln (rout/r)

ln (rin/rout)

)]

(5.3)

For the physical scale of the apparatus used in the present investigation the maximum

potential mid-radius of the annulus is Φ/ne ∼ 2 × 10−11 V-m3. This ratio is used

to define the maximum theoretical electron density and the maximum "operating"

density as follows.

Since electrons are radially confined in an electrostatic potential well (see Section

5.3.1) the maximum theoretical density limit is a function of the potential well depth.

The maximum theoretical density is the electron density that would create a potential

that would exactly cancel the electrostatic potential well. This maximum density is

shown in Figure 5.1 as a dashed line. Above this maximum density the self-field

of a one-component electron plasma would overwhelm the confining potential and

would be entirely anti-confining. The magnitude of the space-charge field may be

made negligible compared to applied fields by adjusting the electron density within

the confinement volume. Here it is proposed that if the space-charge potential is on

the order of one percent of the confining potential, the space-charge potential may

be considered negligible. A solid line is shown in Figure 5.1 indicating a density

corresponding to a radial self-field that is one percent of the potential well depth.

The potential well is in the range of 10 − 300 V (described in Section 4.4 and in

more detail in Section 5.3.1) over the majority of the confining volume, which varies
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Figure 5.1: Electron density limit for confinement in the Hall Electron
Mobility Gage.

with both axial location and applied electric field. Thus, if the electron density were

limited by this criterion to ne ∼ 1010−1011 m−3 (typical for non-neutral particle traps

[112, 124, 128]), then the maximum space-charge potential would be less than one

percent of the potential well depth, which would not significantly alter the electron

trajectories from those determined by the vacuum electric field alone.‡

In the quasi-neutral plasma of a Hall thruster, because the electrons are magne-

tized and ions are not, the E × B drift causes a Hall current to exist[129]. Likewise,

a Hall current exists in the Electron Mobility Gage because of the E × B drift of

electrons that creates a magnetic field that opposes the applied magnetic field. This

Hall current exists regardless of the ion density, as the ions are unmagnetized and are

accelerated axially and do not contribute to the Hall current. Assuming uniform den-

sity throughout the trapping volume, which is limited to 1010−1011 m−3 as described

‡During the course of experiments electron density was monitored using a planar Langmuir
probe (described in Section 6.3.2), and the emission characteristics of the tungsten injection filament
(described in Section 4.4 and 6.3.2) were controlled to limit the electron density. Proof of the ability
to control electron density is presented in Chapter 6.
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above, the magnetic field induced by the Hall current is on the order of 1 × 10−11

Tesla, which is negligible compared to the 0.01-Tesla applied magnetic field. Thus,

the magnetic and electric fields are considered rigid and are given by the vacuum

solution.

5.2.3 Collisions

In the Hall Electron Mobility Gage electrons may collide with neutrals, ions, or other

electrons. It was found that electron-neutral collisions are primarily responsible for

the momentum scattering of electrons, and electron-electron and electron-ion col-

lisions provide insignificant contributions to directional scattering. It was found,

however, due to their similar mass, electron-electron collisions contribute in part to

the energy exchange of electrons within the Hall Electron Mobility Gage. Each of

these are presented in greater detail below and assessed for their contribution to clas-

sical cross-field electron mobility and energy transfer. This section is not intended to

be an exhaustive kinetic description of collisions within the Hall Electron Mobility

Gage, but only presents order of magnitude estimates in order to gauge the relative

importance of collision species for momentum and energy transfer.

Electron-neutral Collisions. Equation (2.31) was used to determine the collision

frequency for electron-neutral collisions. The density of neutrals may be controlled by

the flow rate of the background gas (described in Section 6.2.2). The neutral density

may be found from the ideal gas law:

n0 =
p

RT
(5.4)

Using Eq. (5.4), background pressures of 10−6 − 10−4 Torr correspond to neu-

tral densities in the range of 1016 to 1018 m−3 (using T = 298 K). The cross-section
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for momentum-transfer electron-neutral collisions was found from the Siglo database

(argon cross sections are shown in Fig. 2.4), and for the approximate electron tem-

perature within the confinement volume (∼ 20 eV) the cross section was estimated to

be ∼ 9× 10−20 m2. Based on a Maxwellian distribution the average electron velocity

(v̄ =
√

8kT/πm) is 3 × 106m/s, given an electron temperature of 20 eV. Equation

(2.31) then results in a momentum-transfer electron-neutral collision frequency in the

range of νen = 103 to 105 s−1 for the conditions investigated. (The electron-neutral

collision frequency of Hall thrusters is on the order of νen = 105 to 108 s−1.) Electron-

neutral collisions lead to significant momentum transfer of electrons (i.e. significant

directional changes) but result in very little energy transfer per collision because of the

large disparity in mass. The energy transferred in elastic collisions is proportional to

mM/(m+M)2[62] where m and M are the masses of colliding particles. If m≪M (as

with electrons and argon atoms) the energy transfer is proportional to the mass ratio

between electrons and neutrals, which for argon is on the order of me/MAr = 10−5.

The rate of energy transfer depends on the energy transferred per collision (δǫ) times

the collision frequency, νee, which is (δǫ) νee = 10−2E0 to 100E0 J/s, where E0 is the

initial kinetic energy of electrons.

Electron-ion Collisions. The electron-ion collision frequency was found using Eq.

(2.61). An estimate of the maximum ion density is needed to quantify the electron-ion

collision frequency and may be obtained by the following method. Because electrons

are supplied externally and electron-ion pairs may be created within the confinement

volume, the total electron current (Ie = qAneuez) must be greater than or equal to

the ion current (Ii = qAniuiz), where qAneuez > qAniuiz. With this in mind,

the relative ion density to electron density may be estimated by comparing the axial

velocity of each species, where

ni 6 (uez/uiz)ne (5.5)
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The axial velocity of ions accelerated through a potential (neglecting ion-neutral

collisions), φ, is given by

uiz =

√

2eφ

mi
(5.6)

Assuming uniform ion production over the region of the Hall Electron Mobility Gage

confinement volume, the average axial velocity of ions may be estimated as being

accelerated through half the total anode-to-cathode voltage where

uiz =

√

eVac

mi
(5.7)

For an anode-to-cathode voltage of Vac = 100 V, this corresponds to an axial velocity

of 1.5 × 104 m/s. Classical and Bohm mobility may provide a lower and upper

bound of electron velocity, respectively, to bracket the axial electron velocity. The

axial velocity of electrons due to classical mobility, using Eq. (2.52) and Eq. (1.1),

an electric field of 3 × 103 V/m and magnetic field of 0.01 T, was found to be in

the range of 0.2 to 20 m/s (for the range of momentum-transfer collision frequency

described above). The axial velocity of electrons due to Bohm mobility, using Eq.

(2.65) and Eq. (1.1), was found to be 2 × 104 m/s. By using the Bohm mobility

for axial electron velocity, the inequality in Eq. (5.6) becomes ni 6 (1.3)ne and

thus ion density was found to be at most on the same order as the electron density.

As described in Section 5.2.2, the electron density should be limited to ∼ 1010 to

1011 m−3. Therefore, a maximum ion density of 1010 to 1011 m−3 was assumed. For

a Debye length of 0.33 m, (calculated using an approximate electron density of 1010

m−3 and electron temperature of 20 eV), the resulting Coulomb logarithm is ∼22 (Eq.

(2.56))§. The electron-ion collision frequency was then calculated using Eq. (2.61)

(and Eq. (2.60)), assuming singly charged ions, and was found to be in the range

of 10−2 to 10−1 s−1. Figure 5.2 shows the Coulomb collision frequency for electron-

electron and electron-ion collisions (which are equal for ne∼ni and singly charged

§Because of the logarithmic dependence the Coulomb logarithm varies very little over all param-
eters within the Hall Electron Mobility Gage where 21 . ln Λ . 23.
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Figure 5.2: Coulomb collision frequency as a function of electron or ion
density (assuming single ionization) for electron-electron and electron-ion
collisions. Colors indicate incident electron energy.

ions) for a range of electron temperatures¶. The collision frequency for electron-

ion collisions was found to be much less than that of electron-neutral collisions and

has been thus neglected in any calculation of classical momentum-transfer collision

frequency. Electron-ion collisions also were found to be negligible in energy transfer

compared with electron-neutral collisions, as the low collision frequency combined

with the small energy transfer per collision resulted in an energy transfer rate on the

order of 10−7E0 to 10−6E0 J/s.

Electron-electron Collisions. As described in Section 2.2.3, electron-electron col-

lisions do not contribute to electron transport because the momentum effects of the

like-particle collision exactly cancel (also described in Ref. [38], p. 177). However,

an appreciable energy exchange occurs in each electron-electron collision due to the

¶ln Λ was estimated to be ∼ 20 since for Hall Thrusters ln Λ ∼ 17 and for the Hall Electron
Mobility Gage ln Λ ∼ 22. Certainly this estimate does not affect the order of magnitude of the
collision frequency for either and provides a good estimate for comparison.
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equivalent mass of colliding species. The energy exchange in electron-electron colli-

sions is proportional to mM/(m+M)2, where m = M = me, so the energy transfer

per collision is on the order of (1/4)E0. For an electron density of 1010 to 1011 m−3,

electron temperature of 20 eV, and a Coulomb logarithm of 22, the electron-electron

collision frequency was determined to be in the range of 10−2 to 10−1 s−1. The rate

of energy exchange is then on the order of 10−3E0 to 10−2E0 s−1. For the lowest

neutral densities and highest electron densities the energy exchange due to electron-

electron collisions is on the same order as that of electron-neutral collisions, but under

most conditions electron-electron collisions may be considered negligible in terms of

energy-transfer.

Because the effects of the Coulomb interaction fall off so quickly with both in-

creasing temperature (average particle velocity) and decreasing density, electron-ion

Coulomb collisions provide negligible momentum transfer for this sparsely populated,

high-temperature plasma. Because like-particle collisions do not contribute to a net

momentum transfer, electron-electron collisions are also insignificant for momentum

scattering. Thus, the dominant momentum transfer mechanism is through electron-

neutral collisions. Energy transfer within the Hall Electron Mobility Plasma takes

place on a much longer time scale than momentum transfer, where electron-neutral

and electron-electron collisions may both contribute to electron energy exchange but

result in an energy transfer rate, which is much lower than the momentum transfer

collision frequency. The importance of these differing time scales is emphasized in

Section 5.3.2.

5.3 Electron Dynamics

The magnetic field within the Hall Electron Mobility Gage impedes axial electron

motion; however, electrons freely move parallel to the magnetic field lines. Without

some type of radial confinement, analogous to the dielectric walls found at the inner
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and outer channel of a Hall thruster, electrons would be lost radially. In order to eval-

uate cross-field electron mobility, the radial losses must be small so that the dominant

electron flux is axial, through cross-field electron mobility, rather than radial along

field lines. The radial confinement is achieved by a confining electrostatic potential at

the trap inner and outer radii, due to the departure of electrostatic equipotential lines

from magnetic field lines (at the edges of the confinement volume). This confinement

is enhanced by a magnetic mirror due to increasing Br near the iron pole faces. A

schematic of a particle trajectory within this confinement scheme is shown in Fig.

5.3. The following sections outline the radial confinement mechanism(s), quantify a

radial confinement time in order to compare radial loss rate with the axial transport

rate, and describe the resulting electron motion within the Hall Electron Mobility

Gage. The analysis in Sections 5.3.1 and 5.3.2 was published in part in Ref. [119].
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Figure 5.3: Schematic representation of an electron trajectory within the
potential well of the Hall Electron Mobility Gage (top) and an axial view of
the guiding center trajectory within the channel annulus (bottom). Orien-
tation is shown in the bottom right of each. Trajectories are not shown to
scale.
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5.3.1 Radial Confinement Characteristics

Since electrons are thermally mobile along magnetic field lines, the forces acting on

electrons in the direction of the magnetic field are important in determining radial

confinement. The total net force (confining and anti-confining) needs to be confining

to create a potential well where the magnitude of the potential is greater than thermal

energy of electrons. The thermal velocity and space charge repulsion would act to

oppose confinement and the electric field force and magnetic mirror force would act

to enhance confinement of particles. The space charge was addressed in Section

5.2.2 and may be considered negligible if the electron density is limited. Thus, this

section investigates the confining forces electrostatic and magnetic mirror, (described

qualitatively in Section 4.3) to determine their effectiveness of confinement compared

with the electron thermal velocity, which acts to oppose confinement.

In the Hall Electron Mobility Gage, electrons are radially confined based on both

the direction and magnitude of their velocity vectors. The velocity vectors that would

result in confinement and losses may be mapped in velocity "space" to show regions

that are confined or lost. The confinement "space" in the Hall Electron Mobility Gage

may best be understood by inspection of the magnetic mirror confinement, which is

strictly direction dependent, and then expanded to include the electrostatic potential

well confinement, which is both direction and energy dependent.‖

Within a simple magnetic mirror there exists a region in velocity space, the loss

cone, where if velocity trajectories lie within this region, the particle is no longer

confined by the magnetic mirror. (This concept was described in detail in Section

2.1.2 and the simple loss cone shown in Fig. 2.3) The loss cone is defined by the

angle of the velocity vector, θm, which is the minimum pitch angle an electron may

have and still be confined by the magnetic mirror. The loss cone angle is a function

‖The radial confinement scheme of the Hall Electron Mobility Gage resembles that of a magnetic
mirror trap with electrostatic "end-stoppers" [130].
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of the mirror ratio, Rm, which is defined as the ratio of maximum magnetic field to

minimum magnetic field. In the configuration of the Hall Electron Mobility Gage,

the mirror ratio was found to be ∼ 2 and the resulting loss cone was found to be

θm ∼ 45◦.

Trapping by magnetic mirrors is not a new concept, and in fact has been used with

much success in trapping positrons and other high temperature particles and plasmas

[45, 131, 130]. However, confinement times in magnetic mirrors are limited, as particle

velocities are directionally scattered by collisions. Particles whose trajectories may

be initially trapped will eventually undergo a collision process where the resulting

velocity trajectories are scattered in velocity space such that they eventually fall

within the loss cone. Numerous investigations have been undertaken to quantify

this process[45, 131, 130], and it is generally accepted that a simple magnetic mirror

configuration can not feasibly trap particles for much more than a 90◦ collision time.

(A 90◦ collision may be either a large angle scattering event, such as an electron-

neutral collision, or the cumulative effect of many small angle deflections totaling 90◦,

as in Coulomb collisions, both outlined in Section 2.2.3.) In the Hall Electron Mobility

Gage, scattering into the region of velocity space within the magnetic mirror loss cone

occurs within a few collisions, which does not provide an effective radial trap, as tens

of collisions are required for an electron to move through the trap axially by classical

mobility. However, many magnetic mirror geometries also incorporate electrostatic

confinement to enhance the confining magnetic mirror[130], where this concept is also

exhibited in the Hall Electron Mobility Gage.

An electrostatic potential well is created by an electrostatic force acting parallel

to the magnetic field due to the departure of electric equipotential lines and magnetic

field lines at the confinement volume periphery. This is explained in Section 4.3.

The magnitude of the potential well, given by φw, is equal to the potential difference

between the local potential at the center of the confinement volume annulus and

the cathode. To demonstrate the incorporation of an electrostatic potential well in
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addition to the magnetic mirror confinement, the analysis of a velocity space loss cone

is extended to include the fact that radial losses from the confinement volume depend

on velocity magnitude as well as direction. The new velocity space "loss region" is

determined similarly to the original loss cone presented in Section 2.1.2 except the

conservation of energy equation (Eq. (2.7)) is replaced by[130]

mv2
0

2
=

mv′2⊥
2

+ eφw (5.8)

The additional term eφw is the depth of the electrostatic potential well (expressed in

terms of energy) given by the potential difference, φw, between the local potential at

the center of the trap on a given magnetic field line and the cathode potential (as

described in Section 4.3). The parallel component of velocity necessary to overcome

this confining potential and exit the trap (via collision with the iron pole) is given as

the critical velocity,

vc =
√

2eφw/m. (5.9)

Combining equations (2.6) and (5.8) and solving for v2
0/v

2
0⊥ gives

sin2 θc =







(1 − v2
c/v

2
e) /Rm ve > vc

0 ve < vc







(5.10)

where ve is the magnitude of the electron velocity. This results in a loss region that is

represented as a hyperboloid, which is velocity magnitude and direction dependent,

shown in Fig. 5.4. The velocity space loss region is important in determining the

radial confinement time of electrons within the Hall Electron Mobility Gage.

5.3.2 Radial Confinement Time

Electrons that are radially confined within the Hall Electron Mobility Gage could

eventually be scattered into the velocity-space loss region (Fig. 5.4) by collisions
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giving rise to a finite radial confinement time. Numerous analyses of collisional losses

in magnetic mirrors are available concerning fully-ionized plasmas where small angle

deflections due to Coulomb interactions have a much greater effect than large angle

scattering (electron-neutral) collisions[45, 130]; this is because most plasmas confined

using magnetic mirrors are fully ionized and the neutral density is negligible. These

analyses investigate collisional losses as a diffusion process in velocity space, as small

angle collisions produce a "random walk"-type process of velocity trajectories[130, 45],

most often using the Fokker-Planck[52, 51] model to describe the effect of collisions

on the changes in the velocity distribution. However, in a partially ionized plasma,

like that within the Mobility Gage, the dominant scattering mechanism is large-angle

scattering by electron-neutral collisions. A "random-walk" diffusion in velocity space

is not applicable, as the final direction of the velocity vector is unrelated to the initial

direction of the velocity vector, in electron-neutral collisions. (The reader is directed

to Section 2.1.2 on the kinetic treatment of the Boltzmann collision term and Section

5.2.3 on relevant collision dynamics). Therefore, an analysis of confinement time

where large-angle scattering events are the dominant loss mechanism is necessary in

this case.

In the analysis presented here the electron flux into the loss region (i.e. radial

losses) is investigated in order to determine a radial confinement time. A summary

of the derivation is presented as follows. First, the BGK (Bhatnagar-Gross-Krook)

model[50] was used to obtain an equation for the velocity distribution as a function

of time due to large-angle scattering collisions. The BGK model accounts for ran-

domized events that act to deplete one distribution and repopulate another. Within

this equation are the initial (non-Maxwellian) and final (Maxwellian) velocity distri-

butions. The initial velocity distribution was derived given confinement properties of

the Hall Electron Mobility Gage and was substituted into the BGK model along with

the final Maxwellian distribution. This resulted in an equation for the time evolution

of the velocity distribution from time t = 0 to ∞ due to collisions (the Boltzmann

125



collision term). Recognizing that the Hall Electron Mobility Gage would be oper-

ated in steady state and the loss region would always be empty (total relaxation to a

Maxwellian distribution would never be achieved; the "empty loss cone" assumption

is described in more detail in the following paragraph), the loss of electrons from the

confinement volume was obtained by investigation of the change in the distribution

at time t = 0, which represents the time when the loss region would be empty. The

confinement time was then determined as the density divided by the volumetric flux

of electrons exiting the confinement volume, and the radial confinement time was

compared to the axial confinement time (time it takes for an electron to traverse the

confinement volume axially from cathode to anode). It was found through this anal-

ysis that radial losses would be very small so that the primary electron flux would be

axial. The details of this derivation are presented below.

For simplification, within this derivation an electron whose trajectory has been

scattered into the loss region has been considered permanently "lost" from the con-

finement volume (recombined at the magnetic poles) and effects such as secondary

electron emission from the magnetic poles were neglected. Because particle transit

times (radially) across the physical confining volume were found to be short compared

with collision times, a particle that had been scattered into the loss cone was assumed

to be lost before it could scatter again and re-enter the confining volume. Therefore,

the velocity space loss region was assumed to be empty in steady state operation of

the Hall Electron Mobility Gage. A similar description of a strongly depleted loss re-

gion was presented by Kaganovich et al.[23]. The type of distribution resulting from

an empty loss region is non-Maxwellian as there are voids in velocity space in both

direction and magnitude. Scattering collisions have the effect of replenishing these

voids in velocity space, as collisions drive a distribution to a Maxwellian state. Since

particles in the loss region have been assumed to immediately exit the trap (they

have zero lifetime in the loss region) the flux of particles exiting the trap was found

from investigation of the flux of particles into the loss region. This flux of electrons
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was determined by an analysis of the relaxation of the initial non-Maxwellian distri-

bution function within the confinement volume (in velocity space), to a Maxwellian

distribution as collisions populate the loss region.

In Section 5.2.3 it was noted that the time for significant momentum transfer

(directional scattering) was found to be much shorter than the time for significant

energy transfer to occur. For the purposes of simplification, the energy relaxation∗∗ is

taken to occur on the same time scale as directional scattering. This approximation

provides an upper bound to the flux of electrons from the confining volume, as the

filling of the high-energy Maxwellian tail (which is responsible for losses) will occur

more slowly than this approximation assumes.

The Boltzmann collision term in the BGK approximation (sometimes referred to

as the Krook collision operator) is given by:

δF (t, r,v)

δt
= −F (t, r,v)

τF
+
F0(t, r,v)

τ0
(5.11)

where F is the actual phase space distribution of the system and F0 is a Maxwellian

distribution†† . This equation physically means that the non-equilibrium distribution

function, F , loses particles exponentially on a time scale of τF and these particles

are replaced by a Maxwellian distribution, F0, on a time scale of τ0. Assuming a

uniform spatial distribution of particles, the spatial term, r, is dropped for the re-

mainder of this section, and the only concern is with the distribution of velocities.

From here, any reference to "space" and "volume" only refers to regions of velocity

space. The solution to the ordinary differential equation (Eq. 5.11) given an initial

velocity distribution of Fin at t = 0 is

∗∗Energy relaxation refers to the process by which the energy exchange during collisions causes
the energy distribution to assume a Maxwellian. The energy relaxation time is generally defined as
a characteristic time over which this process takes place.

††F is used rather than f to signify that this distribution is not normalized to 1, rather, it is
normalized to n where

∫

∞

Fd3v = n.
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Figure 5.5: Approximated confinement and loss regions for confinement
time analysis

F (t,v) = F0(v) + [Fin(v) − F0(v)] exp

(

− t

τ0

)

(5.12)

assuming τF = τ0. The initial velocity distribution function is given by

Fin(v) =







0 in the loss region

Maxwellian in confinement region







(5.13)

The confinement volume and loss region are approximated as shown in Fig. 5.5

for geometric and mathematical simplification (without this simplification an ana-

lytical solution would not be possible). The actual loss region is smaller than this

approximation so confinement time determined using this approximation would result

in a conservative estimate.

In the confinement region the initial speed distribution‡‡ for θm > θ > π − θm

‡‡The speed distribution is illustrated here as the confinement depends on the absolute magnitude
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(Region 2, in Fig. 5.5) is given by a Maxwellian (all speeds are confined for this range

of pitch angle) and for θ < θm (Region 1, in Fig. 5.5) the initial distribution is given

by a truncated Maxwellian speed distribution, shown in Fig. 5.6 , where the function

is Maxwellian for v < vc and zero for v > vc.

In the velocity-space confinement region the velocity distribution is given by

Fin(v) = An

(

β

π

)3/2

exp(−βv2) (5.14)

where β = me/(2kTe) and A is a normalization constant. To find the normaliza-

tion constant it is recognized that particles only exist in the confinement region (the

loss region is empty) so integrating over only the confinement region will normalize

of the velocity given a particular pitch angle, θ.
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the function to n.

n =
∫∫∫

∞

d3vFin =
∫∫∫

conf.vol.

d3vFin =
∫ 2π

0
dφ
∫ θm

0
2 sin θdθ

∫ v0

0
Finv

2dv

+
∫ 2π

0
dφ
∫ π−θm

θm
sin θdθ

∫∞

0
Finv

2dv

(5.15)

In this integration, the first and second volume integrals are the integrals over re-

gions 1 and 2 (Fig. 5.5), respectively and the upper bound v0 = vc/cosθc. Evaluating

the integrals gives a normalization constant of

A =

{[

−2vc√
πv||

exp

(

−v2
c

v2
||

)

+ erf

(

vc

v||

)

− 1

]

(1 − cos θm) + 1

}−1

(5.16)

where v|| is the parallel thermal velocity of an electron. Thus, the total initial

distribution is given by

Fin(v) =







0 in the loss region

An
(

β
π

)3/2
exp(−βv2) in the confinement region







(5.17)

where the loss region is represented by v > vc and (θ < θm or θ > π − θm) and

the confinement region is represented by θm < θ < π − θm or v < vc.

The initial distribution relaxes to a Maxwellian distribution, F0, as collisions

scatter particles into the empty region of velocity space vacated by the loss cone,

where

F0(v) = n

(

β

π

)3/2

exp(−βv2) (5.18)

Substituting these into Eq. (5.12) gives the distribution function as it relaxes in
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time:

F (t,v) =







n
(

β
π

)3/2
exp(−βv2)

(

1 + (A− 1) exp(− t
τ0

)
)

loss region

n
(

β
π

)3/2
exp(−βv2)

(

1 − exp(− t
τ0

)
)

confinement region







(5.19)

Therefore, the Krook collision operator is given by

δF (t,v)

δt
=







n
(

β
π

)3/2
exp(−βv2) 1

τ0
exp(− t

τ0
) loss region

n
(

β
π

)3/2
exp(−βv2) (A−1)

τ0
exp(− t

τ0
) confinement region







(5.20)

The time derivative of the distribution function at time t = 0 describes the change

in the distribution at the time that the loss cone is empty. In the confinement vol-

ume considered in the Hall Electron Mobility Gage, all particles in the loss cone will

immediately disappear from the trap, thus the loss cone is always empty and the

time derivative of F at t = 0 corresponds to the steady-state change in the distribu-

tion function assuming that the distribution within the confinement region remains

constant (replenished by the electron loading source) due to steady-state operation.

Ultimately, the goal in this analysis is to quantify the flux of particles from the con-

finement region (Regions 1 and 2 in Fig. 5.5) to the loss cone. Flux in velocity space

may be understood by an analogy to flux in configuration space. (This elegant math

trick was provided by Ref. [132].) By density conservation in configuration space

∂n(x, t)

∂t
= −∇ · Γ (5.21)

where Γ is particle flux. By analogy in velocity space where Jv is given to be the flux

∂F (v, t)

∂t
= −∇v · Jv (5.22)

where F may be thought of as the "velocity-space density." A volume integral in

velocity space may be applied to make use of Gauss’ theorem to convert the volume
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integral of this divergence to a surface integral of the flux

∫

conf.vol.

d3v
∂F (t,v)

∂t
= −

∫

conf.vol.

d3v∇v · Jv =

∫

loss region

dSv · Jv (5.23)

This results in the surface integral of a flux, which in this case represents the flux of

particles in velocity space through the loss cone surface, or equivalently, the particle

loss rate from the confinement volume. Thus, the flux of electrons from confined

velocity space to the loss cone at t = 0 is found by evaluating the volume integral of

the distribution function, F , over the confinement volume

∫

conf.vol.

d3v
∂F (t,v)

∂t
= − n

τ0

(A− 1)

A
(5.24)

This flux is negative representing flux out of the confinement volume. The average

confinement time of a particle, then, is given as the density over the flux

τp =
τ0A

(A− 1)
(5.25)

Various limits of the confinement time may be investigated by inspection of Eq.

(5.25). Inspection of A reveals that particle confinement time is a function of the sim-

ple magnetic mirror loss cone angle, θm (since the loss region has been approximated),

critical velocity to overcome the electrostatic potential, vc, and the velocity parallel

to the magnetic field, v||. Here various limits become apparent. It may be seen that

as θm approaches zero, A = 1, giving zero flux and an infinite particle confinement

time. Physically, this limit means the loss region volume approaches zero and thus

the entire velocity space is a Maxwellian in its initial state (i.e. no relaxation). An-

other interesting limit is when vc/v|| ≪ 1, A = 1/ cos θm which is equivalent to the

solution of the BGK relaxation for a magnetic mirror confinement without electro-
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static confinement (i.e. Region 1 in Fig. 5.5 is included in the loss region). Finally,

when vc/v|| ≫ 1, A approaches unity, giving small flux and a particle confinement

time that approaches infinity. This limit physically means that if the electrostatic

confining potential is much greater than the thermal velocity of electrons, the losses

are very small. The magnitude of the parameter, vc/v||, is critical when investigat-

ing particle confinement times in the Hall Electron Mobility Gage (i.e. a large vc/v||

results in long confinement times).

Particle confinement times in the Mobility Gage vary based on the mirror ratio,

the depth of the electrostatic potential well, and the thermal velocity of electrons.

Since the geometry of the apparatus is fixed, the magnetic mirror ratio (and thus loss

cone angle, θm) is constant, but vc and v|| change with both anode-to-cathode volt-

age and with position within the trap. The normalization constant and confinement

times versus vc/v|| are plotted in Fig. 5.7. Confinement time is given in terms of

τpνen; this number physically represents the average number of scattering collisions

an electron may undergo and still be confined by the trap. A minimum ratio, vc/v||,

may be calculated to determine the minimum radial particle confinement time ex-

pected within the Hall Electron Mobility Gage. The velocity needed to overcome the

potential difference between the local potential and the cathode electrode is also the

maximum energy available to electrons starting at the cathode. If an electron gains

all of the energy available from the field, the maximum parallel thermal energy of

the electron is eφw/3
§§, corresponding to a velocity of

√

2eφw/3me; thus, the lower

limit is vc/v|| =
√

3. Therefore the minimum value of A = 1.03, which corresponds

to τpνen = 34.3.

In the case of minimum vc/v||, radial losses are shown to be fairly insignificant as

the confinement time is significantly greater than the scattering time (i.e. τpνen > 1).

The radial losses are expected to be even more insignificant than depicted by the

§§The total energy is eφw, which in a thermalized distribution corresponds to 3kT/2. The energy
parallel to the magnetic field is kT/2 because of equipartition of energy, which corresponds to an
energy of eφw/3.
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minimum vc/v||. The radial confinement time is expected to be greater than the

minimum confinement time for several reasons: 1.) Electrons are loaded into the trap

potential well with very little energy at a location where the depth of the potential

well is greater than the average electron energy (rather than electrons starting at the

cathode where the potential well does not exist). This is described in more detail

in Sections 4.5 and 6.3.5. 2.) Electrons are expected to have sufficient energy to

suffer inelastic collisions, either excitation or ionizing, so electrons lose energy on the

order of the excitation/ionization threshold in an inelastic collision thereby "cooling"

the electron population. 3.) The volume approximation for confinement and loss

regions was conservative where the approximation overestimated the loss region. The

actual loss region is smaller than was approximated. 4.) In this analysis, the energy

relaxation time (time to fill the Maxwellian tail of the distribution) was taken to

occur on the same time scale as the directional scattering time. Electrons were found

to suffer collisions with neutrals much more frequently than with other electrons so

the time for significant energy transfer during collisions is 5 orders of magnitude

less than the time for significant momentum transfer. This was presented in more

detail in Section 5.2.3. Particles enter the loss region through direction and energy

changes; if energy changes are much smaller and/or less frequent than estimated by

the BGK approximation, the model has overestimated the radial particle flux. Based

on these considerations, in the operation of the Hall Electron Mobility Gage the radial

confinement time is expected to be long compared to the momentum transfer collision

frequency (i.e. τpνen ≫ 1). As an example, for data obtained (presented in Chapter

6) in the case of φw = 134 V, an electron temperature of Te = 28 eV was measured by

a planar probe. In this example, vc/v|| = 3.09 corresponding to τpνen = 1.3×104 ≫ 1,

indicating that radial losses are negligible.
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5.3.3 Characteristic Single Particle Motion

Based on the motion in magnetic and electric fields presented in Chapter 2 along with

the confinement outlined above, the resulting characteristic motion within the Hall

Electron Mobility Gage may be considered by four modes: a gyration perpendicular

to the magnetic field, a radial bounce within the potential well, an azimuthal drift

(the three of these shown in Fig. 5.3), and an axial mobility.

The highest frequency motion is the electron gyro-frequency, which is given by

Eq. (2.2). In the Hall Electron Mobility Gage the electron gyro-frequency was found

to vary from 5.3×108 to 3.2×109 s−1 (8×107 to 5×108 Hz) for magnetic fields varying

from 0.003 to 0.018 Tesla. The Larmor radius was found to be in the range of 1 to 5

mm for an electron temperature of 20 eV. The second mode of electron motion is the

thermal motion along the magnetic field, given by u||. Assuming electrons are radially

confined in a potential well (described in Section 5.3.1 for confinement analysis) this

corresponds to a "bouncing" motion resembling a simple harmonic oscillator between

the inner and outer radii of the trap annulus. The "bounce" frequency was determined

by assuming a simple harmonic oscillator. (This only serves as an order of magnitude

estimate and does not take into account the exact geometry of the field conditions,

most notably the "flat-ness" at the center of the trap where the confining electrostatic

field force does not increase linearly with distance from centerline.) This frequency,

νbounce, is on the order of 107 Hz. The third mode is the slow azimuthal drift of

electrons due to the E × B drift, which is approximately Ez/Br. This closed drift

results in the "magnetron" motion of electrons orbiting the channel annulus. The

"magnetron" frequency is given by νmag = 1/τmag, where the magnetron time, τmag, is

the time for electrons to make one orbit around the channel annulus. The magnetron

time is estimated as the circumference of the channel annulus, 1 m, (at channel center)

divided by the E×B drift velocity. The magnetron frequency was found to be in the

range of 105 to 5 × 106 Hz for the experimental parameters explored.

135



When these frequencies were compared to that of the electron-neutral collision

frequency it was found that several "bounces" and "magnetron" orbits would be pos-

sible between classical (electron-neutral) collisions. If Bohm mobility were assumed,

there would be several effective "collisions"¶¶ per magnetron orbit and the collision

frequency would be on the same order, or higher in some cases, than the bounce fre-

quency. This characteristic motion is represented schematically in Fig. 5.3 and found

to be similar to the electron motion in a Hall thruster[43, 133], which is described in

more detail in Section 5.4. ∗∗∗

5.4 Comparison to Hall Thruster Electron Dynamics

Through the analysis of this chapter, it has been made apparent that the plasma

environment in the Hall Electron Mobility Gage is vastly different from the plasma

environment of a Hall thruster. Various plasma parameters for the Hall Electron

Mobility Gage and a Hall thruster are presented in Table 5.1. A low plasma den-

sity combined with high-temperature particles results in a Debye length in the Hall

Electron Mobility Gage that is much greater than any characteristic dimension in the

Mobility Gage and also much greater than λD found in a Hall thruster. Assuming

the plasma density may be controlled and limited to the range described in Section

5.2.2 (1010 − 1011 m−3), the plasma contribution to the applied field is negligible.

Because of the relative length scales (that is λD > Lplasma) the electric field in the

Mobility Gage may be controlled externally, as plasma Debye shielding of external

fields is negligible. This is directly opposite of the field in a Hall Thruster, where the

shape and strength of the electric field is controlled almost entirely by the plasma.

¶¶The effective Bohm collision frequency, used on occasion in computer models[34], is the collision
frequency when substituted for νm in Eq. (2.52) that results in Bohm mobility. This is given by
νBohm = ωce/16.
∗∗∗These three modes of particle motion (cyclotron, bounce, and magnetron) are found in several

geometries (Penning trap, magnetron discharge, near-Earth space plasma, etc.) where the field
configurations (e.g. swapping of the radial and axial fields) may differ but the same principles apply
[134, 135, 136].
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The long Debye length also renders the plasma in the Hall Electron Mobility Gage

insusceptible to self-sustained plasma waves and oscillations, which are a prevalent

characteristic of Hall thruster discharges[25].

Despite the differences in plasma parameters, the single particle dynamics are

notably similar. The field conditions and resulting dynamical frequencies are provided

in Table 5.1. Most of the Hall thruster parameters presented in Table 5.1 were

obtained directly from Ref. [9] with the following exceptions. The wall collision

frequency in a Hall thruster has historically been estimated to be at least on the

order of the electron-neutral collision frequency, but also depends on the electron

energy distribution function[23]. In Table 5.1 the electron-wall collision frequency

was estimated to be ∼ νen. The turbulent collision frequency was obtained from

Ref. [23], which is the turbulent collision frequency used in the PIC simulation in

order to adjust the electron transport so that simulated plasma parameters agree

with experiment. The electric field range (2− 40 V/mm) was obtained across several

references (2-10 V/mm was cited in Ref. [71], ∼ 5 V/mm in Ref. [23], 20 V/mm in

Ref. [5], and up to 40 V/mm in Ref. [7, 9]). The bounce frequency for a Hall thruster

was estimated as νbounce = 1/τbounce = v̄e/(channel width) with the parameters of

v̄e and channel width obtained from Ref. [9]. Because of the recreation of similar

electric and magnetic field conditions in the Mobility Gage and the radial confinement

of electrons, in absence of dielectric walls, the resulting electron dynamics exhibit

scaling of dynamical frequencies— that is ωce > νbounce > νmag > νen— comparable

to a Hall thruster.

This environment allows for isolation of single-particle effects and effects of static

field geometry while eliminating the effects of collisions with dielectric walls and

fluctuation-induced transport. Since the electric and magnetic fields are designed

and aligned in the same way as a Hall thruster, mobility (classical and/or anomalous)

based on effects of single particle motion in the field geometry would be present in

this device, directly analogous to a Hall thruster. An enormous field of research
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is devoted to the study of plasma instabilities, plasma waves and turbulence, and

the coupled nature of transport with these phenomena, where much of the research

effort of turbulent transport in Hall thrusters is devoted to the development of a

self-consistent solution. The Hall Electron Mobility Gage is obviously limited in the

ability to investigate such plasma dynamics, but consequently, transport observed in

the Hall Electron Mobility Gage represents mobility occurring in the Hall thruster

that is not correlated with fluctuations. It is of note that the vacuum electric fields

may exhibit oscillations of their own due to noise in electrical circuitry, where these

types of ambient oscillations may (or may not[137]) be damped by the self-field of the

more dense Hall thruster plasma. Because of symmetry in the physical geometry of

the Hall Electron Mobility Gage, these oscillations may only occur in the axial and

radial direction and may not exist in the azimuthal direction (except in the case of

slight asymmetries). Effects of these oscillations may be investigated in this device,

where details of this investigation are presented in Chapter 7.

The absence of the dielectric walls in the Hall Electron Mobility Gage simplifies

the environment in some ways, yet makes the correlation between the two geometries

slightly more difficult to formulate. Quantifying the contribution of electron-wall

collision frequency in a Hall thruster is a complex task due to the formulation of

the sheath at the dielectric wall, the space charge saturation at the wall, and the

effects of the secondary electron emission of the wall material. This is in addition to

the complicating factors involved in the kinetic evolution of the electron distribution

function, which also governs the electron flux to the walls. These effects are all in-

controvertibly removed in the Hall Electron Mobility Gage. It is shown in Section

5.3.2 that collisions with the physical geometry of the pole material in the Hall Elec-

tron Mobility Gage are expected to be infrequent and pertain only to electrons with

velocity much greater than the average velocity of the bulk plasma. The confining

electrostatic potential well confines the bulk of plasma electrons serving to reflect

electrons from the volume periphery to the center of the azimuthal channel. This
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effect is much like the effect provided by the sheath at the dielectric wall in a Hall

thruster discharge channel, which serves to repel the plasma electrons from the di-

electric walls. The difference between the two lies in the fact that the electron losses

in the direction parallel to the magnetic field are significantly reduced in the Hall

Electron Mobility Gage, as the confining potential well is nominally greater than the

energy available to electrons and the Maxwellian distribution is only depleted at very

high energies. In contrast, the electron distribution in the Hall thruster has been

shown to be highly anisotropic with a strongly depleted Maxwellian in the direction

parallel to the magnetic field as the sheath voltage is only presumed to be on the

order of the mean electron energy[23]. This was presumed to play a much lesser role

in the Hall Electron Mobility Gage and the effects of collisions with the dielectric are

removed and only the effects of the "reflection" off the sheath remain.

Obviously the entire problem of electron mobility in Hall thrusters cannot be

solved using this apparatus, particularly the self-consistent problem of turbulent

transport. However, a piece of the puzzle may be discovered in the absence of the

complicating effects of fluctuations and wall effects, that has not been previously iso-

lated in this geometry. For example, it was proposed[55] that the reflection off the

sheath could contribute to the energy exchange between parallel and perpendicular

energy components acting as a scattering mechanism for transport. It was also shown

by Eggleston that resonant particle transport occurs on a single-particle level in the

absence of collective effects in a Penning trap due to field asymmetries[114]. Effects

such as these, if present in a Hall thruster, may be investigated using the Hall Elec-

tron Mobility Gage due to the similarities exhibited between the Mobility Gage and

a Hall thruster.
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Chapter 6

Experimental Methods &

Characterization

The purpose of this chapter is to present the details of the experimental setup of

the Hall Electron Mobility Gage, including calibration procedures and experimental

methods for verification of design criteria. First, an overview of the entire setup is

presented in Section 6.1. The goal of the investigation presented in this dissertation

is to examine mobility in Hall Electron Mobility Gage in response to magnetic and

electric fields and pressure. The three of these parameters are presented in Section 6.2

with methods for control, measurement, and/or calibration. Section 6.3 then explores

the plasma properties within the confinement volume, specifically electron density,

electron temperature and ion density. Electron density is important in limiting the

self-field of the electron plasma and in controlling the Debye length. Electron density

is also needed to quantify mobility (described in Chapter 7). Therefore, it is crucial

to maintain the ability to measure and control this quantity. Electron temperature is

determined by the same diagnostics as electron density and is necessary in determining

the classical cross-field mobility with which to compare the experimentally determined

mobility. Furthermore, insight on the electron dynamics in the Hall Electron Mobility
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Gage may be gained in the examination of electron temperature. Finally, ion density

is important to determine the validity of the non-neutral (single-component) plasma

diagnostics used to find Te and ne. The diagnostic methods for measuring these

quantities are presented along with a characterization of the quantities in response

to the control parameters of magnetic and electric field and pressure. The ultimate

objective of this chapter is to thoroughly characterize the Mobility Gage including all

controlled variables and resulting plasma parameters.

6.1 Experimental Setup (Overview)

The entire experimental setup is shown in Fig. 6.1 and a detailed view of the Hall

Electron Mobility Gage with a circuit diagram is shown in Fig. 6.2. The Hall Electron

Mobility Gage was operated in the Isp Lab Vacuum Test Facility #2, a 2-m-diameter,

4-m-long cylindrical vacuum chamber. Rough pumping was accomplished through a

two-stage mechanical pump, capable of delivering 400 cfm. High vacuum was achieved

through the use of three turbomolecular pumps with a combined throughput of 6,000

liters per second providing a base pressure below 10−6 Torr. All experiments presented

herein were conducted within this facility.

An ion gage (shown in Figs. 6.1 and 6.2) was mounted directly to the Mobility

Gage in order to obtain a local measure of pressure inside the Mobility Gage. Back-

ground gas (krypton, argon or helium) was introduced directly into the vacuum tank

where gas flow was controlled through mass flow controllers (shown in Fig. 6.1) to

vary the base pressure from 10−6 to 10−4 Torr. (Pressure measurements are described

in more detail in Section 6.2.2.) The magnetic and electric fields (Fig. 6.2) were cre-

ated through magnetic windings and parallel plates, respectively, where the electrical

schematics for both are shown. The inner and outer magnetic coils were supplied

by independently controlled Sorensen DLM60-10 power supplies operated in current-

limited mode. The current directions for the inner and outer coils are shown in Fig.
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Figure 6.1: Experimental setup for the Hall Electron Mobility Gage.

6.2, as well. The electric field was created using a Sorensen DHP600 programmable

power supply and 390 µF filtering capacitors were employed, as shown, to dampen

oscillations in the power supply voltage. The detailed control, verification, and cali-

bration procedures for the magnetic and electric fields are presented in Sections 6.2.1

and 6.2.3.

The thermionically emitting filament (introduced in Section 4.4) was used as an

electron source, where the electron density within the confinement volume was con-

trolled through control of the emission circuit. The filament heater supply (Sorensen

18-10) and bias circuit (voltage divider) are also shown where the control/measur-

ment of heater current, Ih, and filament bias, Vf , are noted in the figure. The plasma

parameters were measured using the electrostatic probe and various current measure-

ments, which are indicated in Fig. 6.2. The electrostatic probe was used to measure
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Figure 6.2: Experimental setup and electrical schematic for the Hall Elec-
tron Mobility Gage.

electron density and electron temperature through analysis of an I-V characteristic,

where the source-meter circuit with current and voltage measurements (Ip and Vp)

are shown in the figure. The cathode current, shown as Ic in Fig. 6.2, was measured

using a Keithley 485 pico-ammeter, where the measurement was used to estimate the

ion density. The anode current, Ia, was measured using a Femto DLPCA200 variable-

gain, low-noise current amplifier. The anode current is imperative in measuring axial

flux of electrons to determine mobility, where the details of this measurement are

described in Chapter 7. Each of the aspects of the setup are described in more detail

in the following sections.
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6.2 Control Parameters

The electron mobility in the Hall Electron Mobility Gage was investigated in re-

sponse to three main, independently-controlled parameters. The ability to indepen-

dently control these parameters is advantageous for studying electron mobility in Hall

thruster fields as trends of mobility may be examined in response to these parameters

in order to gain insight into the mechanism driving the transport. It is impossible for

these three parameters to be separated in an operating Hall thruster as the three are

internally coupled by the creation and transport of the plasma. The control and/or

measurement of these three parameters is described in the following sections.

6.2.1 Magnetic Field

The inner and outer magnetic coil currents were supplied using two independently-

controlled Sorensen DLM60-10 power supplies operated in current-limited mode. The

control of these power supplies could be achieved manually or through LabView con-

trol using an analog channel. The magnetic field was designed as described in Chapter

4 using Maxwell SV[121] axisymmetric field solver. In order to verify the Maxwell

numerical solution the magnetic field was measured directly using a single-axis Gauss

probe (Walker MG-7D) with an accuracy of 0.10 mT. Chronologically this magnetic

field verification was done before the design and fabrication of the electrodes. A

field map was taken for a single condition where 2 A were on the inner and outer

magnet coils (1240 and 620 Amp-turns, respectively). The radial magnetic field was

measured over a spatial grid of the entire confinement volume cross section (cross

section size 100 mm(radial) x 50 mm(axial)) at one azimuthal location, with 2-mm

grid spacing. An axial magnetic field measurement was not feasible in the area of

the confining volume of the Hall Electron Mobility Gage due to the geometry of the

probe and direction of the sensitive axis. That is, access was only possible in the axial
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direction; the magnetic pole geometry did not allow radial access as the probe length

(∼ 6 inches) was larger than the spacing between the inner/outer magnetic coils and

the confinement volume. The positioning of the probe was achieved by mounting

the probe on a manual two-axis translation stage with 0.01 mm accuracy, where the

(relative) position accuracy was much smaller than the size of the probe and so will

not introduce additional experimental error in excess of the uncertainty of the sensor

position within the Gauss probe. Since the translation stage only had a range of 28

mm × 28 mm, several setups were required to map the entire 100 × 50 mm cross

section where positioning error may have changed between setups.

Figure 6.3 shows the simulated radial magnetic field (Br) over the cross-section

of the confining volume. [t] The inset for comparison is noted and the radial magnetic

field measured by the Gauss probe and this inset are compared in Fig. 6.3∗. The

error between the simulated and measured magnetic fields, shown as a contour map

in Figure 6.4, was found to be < 20 percent, where the error was in the range of 5-10

percent over the majority of the actual confinement volume cross section. The error

was determined by

Error =
Br,sim −Br,exp

Br,sim
(6.1)

and is represented in Fig. 6.4 as fractional error. The simulated radial magnetic field

was higher than the experimental data for all cases. A rotation of the probe in the

r-z plane would produce this result, as the component of the field measured by the

probe would not capture the entire radial component of the field. Furthermore, if

the rotation caused the measurement axis to be sensitive to the axial field, the error

would be greatest near the face of the magnetic pole where the field was strictly radial

and the axial component was negligible. This was exhibited where the error was the

greatest near the pole face and smallest at locations where the axial field was the

∗This data was taken prior to the summer of 2006, where in July of 2006, a significant amount of
this data was confiscated by an unknown thief in Sacramento, Calif. who walked off with the laptop
on which this data was stored. Only a small inset of this data is shown in Fig. 6.3 as this was the
only data recovered.
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Figure 6.3: Simulated radial magnetic field (top) showing data inset, sim-
ulated radial magnetic field for inset (bottom left) and measured magnetic
field (bottom right) where the grid resolution of the data acquisition is shown.

greatest. Therefore, a rotation of the probe was presumed to be the cause of error

in these measurements. Because of the small discrepancy in the actual confinement

volume, which could mostly be attributed to positioning error, the magnetic field

simulations were assumed to be accurate, which was particularly important for the

design of the contoured electrodes.

In the investigation of electron mobility it was necessary to vary the strength

of the magnetic field over a wide range. As was described in Chapter 4 the core

material of the magnetic poles achieved saturation when the interior magnetic field
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was greater than ∼ 1T (10, 000 G). (The B-H curve was presented in Section 4.2,

Fig. 4.5.) The inner pole achieved this interior magnetic field at a coil current of 3.25

Amps (∼ 2000 Amp-turns), yet the outer pole had not saturated at the same current.

If the Amp-turns on the inner coil and the outer coil were increased proportionally

past this point, the field would no longer coincide with the electrode contours, but

rather the field would become distorted as shown in Fig. 6.5 (shown with a coil

current of 5 A corresponding to 3100 and 1550 Amp-turns on the inner and outer

coils, respectively). Therefore the current on the inner pole must be increased at a

greater rate with respect to the outer pole to compensate, as the material response to

the applied field was in the non-linear region of the B-H curve when interior magnetic

fields in the material exceed 1 T. Magnetic field models incorporating the B-H curve

of the material were used to determine the "ideal" inner and outer magnetic coil

Amp-turns to eliminate field distortion, as presented in Section 4.2. A magnetic field

calibration procedure was employed to experimentally verify the model. Results of

this analysis were previously reported in Ref. [118].

To experimentally verify the "ideal" currents on the inner and outer coils, found

from the field models, it was assumed that electron confinement would be most "ef-
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Figure 6.5: The distortion in the field lines caused by inner magnetic core
material saturation showing magnetic field lines intersecting the electrodes.

fective" when magnetic field lines coincide with the electrostatic equipotential lines.

This assumption comes from the fact that electrons are highly mobile along magnetic

field lines and if magnetic field lines intersect the anode electrode, electrons have an

"easy" path to reach the anode. Electrons would follow the principle of free mobility

along field lines rather than cross-field mobility (explained in Chapter 2), which al-

lows electrons to reach the anode much faster. The "effectiveness" of the confinement

was assumed to be correlated with higher electron density (all other parameters held

constant) and thus higher probe currents for the constant electric field and pressure.

(For these experiments the electrostatic probe was biased to "local" potential.) For

each value of inner coil current, the outer coil current was varied independently over a

range of currents, where the test matrix is shown in Table 6.2.1. Using these assump-

tions, an "ideal" outer coil current was found for each inner coil current by finding

the maximum of the probe current. For thoroughness, the procedure was employed

for all values of coil currents, including cases where saturation in the center pole was

not a concern. Given the assumptions noted, the most effective outer magnetic field

would correlate with the peak in the recorded probe current over the parameters in-
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Table 6.1: Test matrix for the optimized coil currents in the creation of the
B-field

Inner Coil Current (A) Outer Coil Current (A)

(varied in increments of 0.05 A)
0.5 0 − 2.5
1.0 0 − 2.5
1.25 0.5 − 4.0
1.75 0.5 − 4.0
2.0 1.5 − 4.25
2.5 1.5 − 4.25
3.0 1.5 − 4.25
4.0 1.5 − 4.25
5.0 2.0 − 4.5
6.0 2.0 − 4.5
7.0 2.0 − 4.5
8.0 2.0 − 4.5
9.0 2.0 − 4.5

vestigated, so the ideal value of outer coil current was found by assessing the peak in

the corresponding traces.†

Figure 6.6 shows a sample plot of probe current versus the outer magnetic cur-

rent (in Amp-turns) for the case of 3 A (1860 Amp-turns) on the inner magnetic

coils. Error bars are presented as the 95% confidence interval based on the standard

deviation of the probe current (averaged over 100 measurements)— error bars in the

plots of probe current do not take into account any other sources of experimental

error. In this example, the maximum probe current, assumed to correlate with the

maximum electron density in the trap, occurs at the ideal outer magnet current of

2.29 A (710 Amp-turns) for 3 A (1860 Amp-turns) on the inner coils. Similar probe

investigations of trap performance were repeated over the range of inner coil currents

†For the "effectiveness" measurements the absolute measure of electron density was not necessary,
as only the relative density was important. Thus, probe sweeps such as those described in Section
6.3.2 were not conducted at each variation of the outer magnetic field current. Rather the relative
electron density was found from the relative probe current while the probe bias was held constant.
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Figure 6.6: A sample plot of the ideal outer coil current for an inner coil
current of 3 A determined through the B-field tuning procedure (left) and
the experimentally and numerically determined ideal outer magnetic current
in Amp-turns, for each inner magnet current (right).

considered in this work, where the ideal outer coil current was taken to be the value

where the electron density (i.e. probe current) was at its maximum value. (Complete

results are presented in Appendix B.) Figure 6.6 shows the ideal outer magnetic

current values that correspond to each inner magnetic current for both the numerical

simulations with Maxwell (described in Chapter 4) and experimental investigations

using the probe technique. The method in determining error bars in the experimen-

tal data are schematically shown (red) in Fig. 6.6 (left). The range of the error bar

was determined by extending the lower error bar (from the probe measurement) to

the right and left until it intersects the experimental trace. The width of this box

becomes the range for the error bars shown in Fig. 6.6 (right). The discrepancy be-

tween the simulated and experimental results may be a result of differences between

the B-H curve used in simulations and the actual material properties of the mag-

netic poles, as machining, heat and or handling may change the magnetic properties

of the material. Differences may also arise out of variations between the electrode

design and the actual geometry of the electrodes, or positioning inaccuracies of the

electrodes. Because these sources of error are systematic in nature, the experimental

values for ideal inner and outer coil currents were used in all experiments, rather than
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the simulated values, although the discrepancy between the two is relatively small.

These experimental values were used in the mobility experiments in variations of the

magnetic field. The effect of this calibration procedure on mobility measurements is

presented in Appendix B.

6.2.2 Pressure

Various background species (usually argon, krypton or helium) were introduced di-

rectly into the vacuum facility by controlling the flow rate with two MKS mass flow

controllers (Model#1179A22CS18V– 0-20 SCCM range, Model#1479A21CR18M– 0-

200 SCCM range) as shown in Fig. 6.1. The B-A type ion gage was mounted directly

to the Hall Electron Mobility gage as shown in Fig. 6.2. The ion gage was calibrated

for nitrogen (N2) and a correction factor was used appropriate for the specific gas

species present. Assuming ambient room temperature and neglecting density gradi-

ents within the confinement volume, neutral density was calculated by the ideal gas

law, presented in Eq. 5.4

Pressure measurements were taken while all other testing equipment was grounded

and turned off (i.e. no magnetic coil current, cathode and anode electrodes grounded,

filament heater turned off and filament circuit grounded) in order to remove any ef-

fects on the pressure reading. The pressure was measured before and after any data

collection so any temporal variation can be accounted for and incorporated in the

experimental error. During any other data collection the mass flow rate was held

constant and the ion gage was disabled as the ion gage emission filament was found

to interfere with the Hall Electron Mobility Gage diagnostics.

To verify the control of pressure through the mass flow controllers a calibration

was conducted for measured pressure versus flow rate. For this calibration the flow

rate of argon was varied from 0.1 to 200 SCCM and resulting pressure measured

with the ion gage, and the calibration curve is shown in Fig. 6.7. The error bars
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Figure 6.7: Calibration curve for pressure versus flow rate (Ar).

shown represent the variation in pressure measured at each flow rate. Since the

number of measurements is small (2-4 measurements) at each flow rate this is not

representative of the true scatter in pressure measurements. It was found that the

background pressure could be varied from 10−6 to 10−4 Torr by varying the flow rate

of the background gas. These results verify the ability to control pressure adequately

over more than two orders of magnitude by varying the background gas flow rate.

Variations in this calibration curve will occur mainly due to outgassing of com-

ponents within the vacuum facility. Outgassing rates depend on a number of un-

controllable parameters such as humidity (which determines the amount of moisture

absorbed by components within the facility) and debris in the vacuum facility. Leak

rates also affect the calibration data where any changes in fittings or feedthroughs (gas

or electrical) may change the leak rate. Outgassing rates decreased with the amount

of time the setup was held at high vacuum (better than 1 × 10−5 Torr). Temporal

variation in the relation of pressure to flow rate was expected, and this calibration

only serves as a qualitative verification of the ability to control pressure. Pressure was

always measured directly using the ionization gage to maintain accuracy. Because of
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this temporal dependency, efforts have been made to randomize the data acquisition

to reduce time-dependent facility effects. The process of randomization is described

in more detail in Section 7.3.

6.2.3 Electric Field

Because the plasma density was controlled to be sufficiently low and the Debye length

sufficiently long (see Section 5.2), the electric field was assumed to be rigid and could

be determined using Maxwell SV[121] electrostatic field solver. The "plasma poten-

tial" was never measured directly, as the self-field of the plasma was found based on

electron density and calculation of resulting space charge potential (Section 5.2) to be

negligible compared with the applied electric field. The electric field was controlled

by applying a voltage bias between the anode and cathode electrodes (acting as par-

allel plates) using a Sorensen DHP series programmable power supply (shown in Fig.

6.2). The electric field and potential was estimated by the vacuum solution, which

was solved spatially within the confinement volume. The term "local" potential, used

frequently throughout this document, refers to the unperturbed vacuum potential

found from this field solver, as described in Section 4.2.

In addition to the static electric field, however, it was suspected that the transient

electric field conditions could affect particle dynamics as there would be no plasma

shielding or dampening of externally applied fields. It was presumed, for example,

that switching noise of the Sorensen DHP power supply may be transmitted to the

cathode and/or anode electrodes and appear as oscillations in the applied electric

field. To measure the oscillations introduced by the switching noise, a fast Fourier

transform (FFT) was taken on the anode electrode using an Agilent 54621A Oscillo-

scope. Capacitors (450 WV, 390 µF, electrolytic) were incorporated in parallel (Fig.

6.2) to act as a filter for the switching noise and dampen the oscillations introduced

by the cathode bias power supply. In order to quantify the effectiveness of the fil-
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with capacitors in parallel with the cathode bias.

tering capacitors, a FFT was taken on the anode electrode with and without the

capacitors incorporated. The red (solid) trace in Fig. 6.8 shows the FFT taken at

the anode electrode where no filtering capacitors were employed. The FFT shows

that oscillations were prominent in the 100-700 kHz range. Another FFT was taken

upon inclusion of filtering capacitors and the resulting FFT is shown in Fig. 6.8 as

a blue (dashed) trace, where it is apparent that the noise in the 100-700 kHz range

was reduced significantly. Mobility measurements were obtained with and without

the filtering capacitors, which is presented in Chapter 7. During the course of any

other experimental data acquisition the filtering capacitors were incorporated.

6.3 Device Operation and Plasma Properties

This section serves as a characterization of the Hall Electron Mobility Gage, where

the operation and resulting plasma properties are confirmed. First, it was necessary

to measure and control electron density in order that the assumption of negligible
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plasma self fields would remain valid. Second, it was desired to investigate electron

temperature so that classical electron mobility may be calculated. Furthermore, the

measurement of electron temperature was desired to gain insight into particle dynam-

ics. Ion density was measured in order to determine both the bounds of the experi-

mental diagnostics (single-component probe theory). Ion density measurements are

also important to quantify the variation in axial electron flux due to ejected electrons

from electron-impact ionization collisions. Finally, it was desired to experimentally

confirm the assumption that collisions with the magnetic pole material could be re-

garded as negligible. This was done through an investigation of electron density as

a function of emission filament bias, where when the emission filament bias was suf-

ficiently negative (with respect to local potential) electrons would obtain sufficient

energy to suffer collisions with the magnetic pole material. These considerations are

presented in the following sections.

6.3.1 Probe Diagnostics

A planar Langmuir probe was used to determine electron temperature and electron

density, where the probe theory presented in this section was first published in [118].

The probe (shown in Fig. 6.2) is a 2.36-mm-diameter tungsten rod encased in heat-

shrink tubing to insulate all but the face of the probe. The probe was biased and

current was measured using a Keithley 2410 sourcemeter, which was controlled manu-

ally or through GPIB (General Purpose Interface Bus) using NI Labview, in order to

obtain an I-V characteristic. The temperature and density were extracted through a

curve fit. For this in-situ measurement, the probe was positioned 180 degrees around

the trap circumference from the emission filament (as shown in Fig. 6.2) so that the

planar collection surface would be sensitive only to electrons that confined in the az-

imuthal confinement volume (rather than electrons directly emitted from the loading

filament).

156



Because the electron plasma has a directed azimuthal flow from the E×B drift,

considerations must be made that deviate from probe theory in plasmas with only

thermal motion. Furthermore, in quasi-neutral plasmas, electron density is found

from the ion saturation current of an I-V probe characteristic (since ne ∼ ni); how-

ever, because the electron density is expected to be significantly higher than ion

density, the I-V characteristic may not be interpreted in the traditional way. In this

configuration the electron density and temperature may be found by examining the

electron-retarding region of the I-V characteristic since ion current is expected to

be negligible (i.e. Vp < φlocal, where Vp and φlocal are probe and local unperturbed

potential, respectively). The method presented here exhibits similarities to methods

used by Kremer et al[138] and Himura et al[139].

A probe theory for the plasma conditions and geometry encountered in this work

can be constructed by adapting the analyses of Gombosi for one-directional flux of

a thermal gas on a surface moving relative to the gas[48]. In a flowing plasma the

total velocity, v, is characterized by a combination of the random thermal motion, c,

and the bulk motion of the plasma, or flow velocity, relative to the probe surface, u,

where v = u + c. Assuming that the plasma is in thermal equilibrium, the Maxwell-

Boltzmann distribution of the plasma is given by

f = n∞

(

β

π

)3/2

exp
(

−β(c21 + c22 + c23)
)

(6.2)

where n∞ is the electron density in absence of a probe, β = me/(2kTe) and ci is the

i-th component of the thermal velocity. The current flux to the probe is then given

by

Jp = e

∫ ∞

−∞

dv1

∫ ∞

−∞

dv2

∫ ∞

v3,min

v3f(v)dv3 = en∞

√

β

π

∫ ∞

v3,min

v3 exp
(

−βc23
)

dv3

(6.3)

where vi is the i-th component of the total velocity and v3 is the velocity component
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perpendicular to the probe. the minimum velocity, v3,min, an electrn can have and

still be collected by the probe‡ is given by

v3,min =

[−2e(Vp − φlocal)

me

]1/2

(6.4)

Substituting a change of variable in Eq. (6.3) (v = c+ u) and evaluating the integral

over c3, the current flux to the probe in the retarding region is given by:

Jp =
1

4
en∞v̄e

{

exp
(

√

V0 − s3

)2

+
√
πs3

[

1 − erf
(

√

V0 − s3

)]}

(6.5)

where v̄e is the average electron velocity given by
√

8kTe/πme, V0 = −e(Vp−φlocal)/kTe

and s3 =
√
βu3 = vf/vth. This result takes on a form similar to classical Langmuir

probe theory[122] (this equation is usually used to determine electron temperature)

with a correction factor added to account for the directed flow of electrons due to

the E × B drift. This may be used as a curve fit in the retarding region of an I-V

probe characteristic to determine electron density and electron temperature. This

probe theory reduces to the simple thermal case as the flow velocity approaches zero.

Therefore, when taking measurements with no directed flow (i.e. collection surface

normal is parallel to the radial magnetic field) this same probe theory can be used

with vf = 0.

Based on the analysis in Section 5.3.2, the distribution function for electrons is

expected to be Maxwellian except for the truncation of the high-energy tail at the

energy corresponding to the trap depth, which depletes the electron distribution at

energies higher than this. The distribution is expected to follow the Maxwellian dis-

tribution below this energy. Upon scattering of electrons, the truncated distribution

may be scattered in three directions. The probe collection surface is sensitive to the

electron velocity (energy) normal to the probe. It is only appropriate to expect the ve-

locity (and energy) distribution in the direction normal to the probe to be Maxwellian

‡in the electron retarding region of the I-V characteristic
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Figure 6.9: Current-voltage characteristics for an internal particle flux
probe. Solid lines indicate best fits of the probe model given by Eq. (6.5).
Traces for three electric field conditions are shown (left), for a constant mag-
netic field and pressure, and traces for three pressure conditions are shown
(right), for a constant electric field and magnetic field.

below the energy of one-third the trap depth, due to equipartition of energy among

the three dimensions. Above this energy, a Maxwellian may not be an appropriate

approximation due to the depletion in the Maxwellian tail. This is described more

thoroughly in Section 5.3.2. Therefore, the curve fit was conducted from the upper

bound at local potential (φlocal − Vp = 0) and the lower bound at one-third of the

trap depth at the location of the probe.

Figure 6.9 presents characteristic probe traces for the conditions noted. Charac-

teristic I-V probe traces for three electric fields with the magnetic field and pressure

held constant are shown in Fig. 6.9 (left). The probe is positioned on channel cen-

terline, collection surface normal to the radial direction, 10 mm from the anode, and

the local unperturbed plasma potential at the probe is known from numerical elec-

trostatic models of the vacuum field. Since the probe collection surface was aligned

parallel to the flow direction, the E × B flow would not affect the probe collection.

Using Eq. (6.5) for a curve fit, with Vf = 0, in the retarding region of the probe I-V

characteristic electron temperature and electron density were found, where curve fits

are shown as solid lines in Fig. 6.9. For the example cases shown, an electron temper-
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ature of 8.0 eV with an electron density of 1.0 × 1010 m−3 was found for the electric

field of 2.9× 103 V/m (corresponding to an anode-to-cathode voltage of Vac = 90 V),

for 4.4 × 103 V/m (Vac = 135 V) electron temperature was 17.8 eV and density was

1.5 × 1010 m−3, and for 5.9 × 103 V/m (Vac = 180 V), electron temperature was 28.0

eV and density 2.6×1010 m−3. Figure 6.9 (right) shows characteristic probe traces for

three pressure conditions with the magnetic and electric fields held constant. For the

example cases shown, an electron temperature of 26.9 eV with an electron density of

2.9×1010 m−3 was found for the pressure condition of 2.4×10−6 Torr, for 1.25×10−5

Torr the electron temperature was found to be 19.2 eV and density was 2.3 × 1010

m−3, and for 7.0 × 10−5 Torr the electron temperature was found to be 9.2 eV and

density 1.0 × 1010 m−3. These traces show adequate curve fits and plausible results

confirming the ability to measure electron density and electron temperature. Only in

certain cases where there is significant ion density (on the same order as the electron

density) is the single-component plasma probe theory invalid, which are described in

Appendix E.

6.3.2 Electron Density

The measurement and control of electron density achieves several purposes. First,

electron density serves as a measure of the space charge, where to have confinement,

the density must be limited according to the constraints presented in Section 5.2.2.

Second, the measurement of electron density, combined with the axial current den-

sity, results in a direct measure of electron mobility (see Chapter 7). Third, since

electron-electron collisions do not contribute to transport (see Section 2.2.3), the

electron density is not expected to have any significant effect on mobility within the

Hall Electron Mobility Gage; concurrent measurements of electron density and mobil-

ity may confirm this assumption (see Chapter 7). Finally, measurements of electron

density may allow a direct measurement of radial losses to the magnetic pole geom-
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etry. Therefore, it is important to have a method to accurately measure electron

density and to effectively control electron density. Electron density was measured us-

ing a planar electrostatic probe, which was described in Section 6.3.1. A parametric

characterization follows to assess the ability to control electron density.

It was desired to control the electron density within the confinement volume

through control of the emission filament circuit for electron loading. The physical

construction of the thermionically emitting filament was described in Section 4.5

and the electrical schematic is shown in Fig. 6.2. The controllable parameters of

the trap loading circuit are the filament bias and the filament heater current. The

filament heater current was used to control the temperature of the filament, T , in

Eq. (4.6). Ideally, the control of the filament heater current would enable control of

the electron density, where variations in filament heater current is the focus of this

section. Variations in filament bias serve to accelerate the emitted electrons to higher

energies, which is used to characterize the radial losses, described in Section 6.3.5.

Several experiments were conducted to quantify the effects of the filament heater

current on the resulting electron density.

First, it was desired to determine the basic characteristics of the electron emis-

sion due to changes in filament heater current. Since filament diameters may vary

between filaments (filaments need to be replaced on a regular basis due to the com-

bination of their delicacy and careless graduate students), and since filament charac-

teristics temporally vary over the lifetime of a single filament, the trends may only

be examined in relative terms when varying filament heater current.

Figure 6.10 shows emission current versus heater current on the bottom axis and

emission current versus temperature using Eq. 4.6 on the top axis. It is shown in

Fig. 6.10 that a very small increase in heater current (< 10 percent) can result in

orders of magnitude differences in emission current (under these conditions of electric

and magnetic field) showing the relative effectiveness of the filament heater current
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Figure 6.10: Emission current versus filament heater current (bottom axis)
and emission current versus temperature (top axis) using Eq. (4.6).

as a control for electron emission, and consequently as a control of density as will be

shown in the following paragraphs.

Preferably, the electron density could be controlled explicitly with the filament

heater current. Therefore, a parametric study was conducted to determine the elec-

tron density as a function of filament heater current, for several conditions of electric

field and magnetic field. For each magnetic and electric field combination the filament

heater current was varied, the pressure and filament bias were held constant, and the

resulting emission current and electron density were measured. Figure 6.11 shows the

electron density as a function of emission current for three cases of magnetic field and

four cases of electric field.

A series of dashed lines are shown representing a heater current of 2.34 A for the

respective electric field conditions. For a constant heater current and constant electric

field, the emission current was found to increase with decreasing magnetic field. Also,

for a constant heater current and magnetic field, the emission current was found to
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Figure 6.11: Electron density shown as a function of emission current where
a constant heater current of 2.34 A is shown as dashed lines corresponding
to the anode-to-cathode voltages indicated.

increase with increasing electric field. These characteristics are thought to be due to

a space charge limitation due to the presence of electrons in the immediate vicinity

of the filament where the space charge is affected oppositely by the magnetic field

and electric field. That is, a higher magnetic field corresponds to lower axial electron

velocity and thus a higher space charge field in the immediate vicinity of the filament.

On the contrary, a higher electric field corresponds to a higher axial electron velocity

and thus a lower space charge in the immediate vicinity of the filament.§

Figure 6.12 shows the electron density as a function of heater current for three

§This space charge field is only hypothesized to exist in the immediate vicinity of the filament
where the electron temperature is relatively low (< 1 eV) and thus the Debye length is smaller than
the confinement volume width (< 100 mm). Within a small distance from the filament, as electrons
gain energy quickly from the electric field, the Debye length quickly becomes large compared with
characteristic device dimensions.
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noted on figure).

electric field conditions and a constant magnetic field and pressure. The intrinsic

variation of density with electric field may be seen; however, the total variation in

electron density due to the filament current was greater than the small variations

with the control parameters. During most mobility experiments, the filament heater

current was held constant where, according to Fig. 6.11, variations in electron density

should be expected. However, since electron-electron collisions do not contribute to

mobility, these variations are not expected to affect mobility as long as the density

is maintained according to the limits outlined in Section 5.2.2.¶ It was shown in Fig.

6.12 that electron density may be controlled adequately by varying the filament heater

current, although electron density varies intrinsically with electric and magnetic field.

¶To verify, the electron mobility was examined as a function of electron density (described in
Chapter 7) where the filament heater current was varied to control electron density and resulting
mobility was measured.
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6.3.3 Electron Temperature

The electron temperature was investigated as a function of electric field, magnetic

field and pressure. Since the average electron velocity, coming from a measure of the

electron temperature, determines the classical collision frequency, the electron tem-

perature was needed for comparison of experimental mobility to classical, as explained

in Section 7.2. The order of magnitude of electron temperature was not expected to

vary so the order of magnitude of classical mobility will be the same regardless of

the measured electron temperature. However, if electron temperature changes as a

function of the parameters (of E, B and pressure), and if the resulting experimental

mobility within the Hall Electron Mobility Gage depends on electron temperature

(as classical mobility does), the trends of the experimental mobility with E, B and

pressure may reflect this. For example, if the pressure was found to influence the

electron temperature and if the mobility in the Hall Electron Mobility Gage were

dependent on the classical electron-neutral-collision frequency (which is a function

of temperature), the trend of experimental mobility with pressure would not be the

expected 1:1 scaling when examining mobility as a direct function of pressure, due

to the covariance between electron temperature and mobility. In short, the varia-

tion of temperature with all parameters was desired as a way to explain observed

trends in electron mobility with the control parameters. Furthermore, an examina-

tion of temperature with the variable parameters would result in a more thorough

understanding of the electron dynamics within the confining volume. For instance,

the electron temperature was expected to increase with increasing electric field, as

greater energy would be available to electrons. Observing this trend would confirm

the understanding of these dynamics.

The measurement of electron temperature was achieved through the method de-

scribed in Section 6.3.1. Electron temperature measurements were taken versus elec-

tric field, magnetic field and pressure for several combinations of the "other" two
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Figure 6.13: Electron temperature versus electric field for constant pressure
and magnetic field.

variables. Two notable trends were observed in this investigation. First electron

temperature was found to increase with electric field in all cases of magnetic field

and pressure. The electron temperature versus electric field is shown in Fig. 6.13

for constant magnetic field and pressure. There is a statistically significant trend‖

where increasing electric field corresponds to increasing electron temperature. This

result was expected as a greater electric field corresponds to greater energy available

to electrons. As electrons migrate through the confinement volume from cathode to

anode, they gain energy from the electric field. Although some of this energy is lost

through inelastic collisions, the electron temperature exhibits a roughly proportional

increase with electric field where the electron temperature corresponds to a constant

fraction of the total available energy.

The second trend was a decrease in electron temperature with increasing pres-

sure; however, this trend was only statistically significant at cases of high electric field

and magnetic field. Electron temperature versus pressure is shown in Fig. 6.14 for

‖Error bars were calculated using the method described in Appendix D.
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Figure 6.14: Electron temperature versus pressure for constant electric field
and magnetic field.

a representative case (field conditions noted on plot). This decrease may at first ap-

pear logical as an increase in pressure corresponds to a greater probability of inelastic

collisions, which cool electrons. However, this result is interesting in that it gives the

first indication of non-classical mobility, which is discussed in Section 7.6. A short

explanation of this rationale is provided as follows. Given purely classical mobility,

the electron temperature should not change with pressure, as the same number of

collisions is necessary to traverse the trap from cathode to anode for a constant elec-

tric and magnetic field regardless of the pressure. The pressure only determines the

average axial velocity with which an electron may traverse from cathode to anode.

The variation in electron temperature with pressure indicates that under higher pres-

sure conditions, electrons suffer more collisions in their path from cathode to anode,

which indicates that another mechanism is causing mobility in addition to collisions.

This point is addressed fully in Section 7.6.
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6.3.4 Ion Density

Within the Hall Electron Mobility Gage electrons may gain energy from the electric

field sufficient to ionize background neutrals and in higher-pressure conditions the

mean free path would become small enough where ionization of background neutrals

would be significantly probable (described in Section 5.2.2). Characterization of ion

density was desired for two key purposes: 1.) to determine if and when non-neutral

plasma diagnostics are appropriate (i.e. in order to use non-neutral probe theory

presented in Section 6.3.1, which neglects ion current) and 2.) to quantify the change

in axial electron flux due to ionization, which affects mobility measurements. (See

Section 7.1 for a description of mobility measurements and methods to account for

ionization.)

The ion density within the Hall Electron Mobility Gage was found from a com-

bination of axial ion current density and axial ion velocity, where the ion density is

given by:

ni =
Jiz

quiz

(6.6)

The axial current density was obtained through a current measurement at the cathode,

Ic, where the surface area, Ac, is known and Jc = Ic/Ac. The ion velocity obtained

through acceleration due to an electric field (initial velocity is assumed to be zero;

collisions are neglected) is given by:

uiz =

√

2qiφ

mi
(6.7)

where φ is the potential difference between the start and end positions of the ion.

(Collisions for ions are neglected since the mean free path for ion-neutral collisions,

even at the highest pressure conditions is ∼ 0.5 m, using a collision cross section of

∼ 5 × 1019 m2[140, 141].) An upper bound of ion velocity may be calculated from

the maximum velocity that ions were able to attain for the full acceleration of the
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trapping volume, i.e. setting φ equal to the anode to cathode voltage. However, this

corresponds to a lower bound for ion density (which is helpful for setting error bars,

see Appendix D, but not entirely useful for assessing the bounds of applicability for

non-neutral plasma diagnostics). As a more conservative approximation, the starting

point for ions was taken to be half the distance between the anode and cathode so

that the potential, φ, was estimated as Vac/2. (If ions were created uniformly over the

confinement volume, this would be a good approximation. It is suspected that more

significant ionization occurs closer to the anode because electrons have gained greater

energy from the field, and thus have a greater probability of ionizing collisions. If

this is the case, this estimate will be conservative as a maximum ion density.) The

resulting density was then approximated by:

ni =
Jc

e

√

mi

eVac
(6.8)

where e is substituted for qi assuming single ionization (similar estimation used in

[142]).

Ion density measurements were taken versus electric field, magnetic field and

pressure for several combinations of the other two variables. Ion fraction (ni/ne)

was also found by concurrently obtaining electron density measurements. The most

notable trend was the increase in ion density and ion fraction with pressure. Figure

6.15 shows the ion density and the ion density fraction (ni/ne) versus pressure for

three cases of electric field (all three shown on each plot). From the lowest pressures

to the highest pressures investigated the ion density varied from less than one percent

of the electron density to approximately equal to the electron density. The magnitude

of ion density was greater for higher electric fields as can be seen in Fig. 6.15 (left).

However, the ion density fraction (right) shows insignificant change with electric field,

reflecting the concurrent change in electron density with electric field.

In the calculation for the ion density fraction for the conditions corresponding to
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Figure 6.15: Ion density, ni (left), and ion density fraction, ni/ne (right),
versus pressure for a constant magnetic field and three conditions of electric
field as noted.

the highest pressures, the error bars grow significantly large due to the inaccuracy in

measuring the electron density. Since under these conditions the ion density is also

found to be high, this calls into question the diagnostic techniques for determining

electron density under these conditions, since the probe theory neglects ion current on

the electrostatic probe. The bounds on the diagnostic techniques are visibly apparent

in the pressure sweeps, where the plots showing ion fraction versus pressure exhibit

increasing error bars as the ion fraction approaches one. This point is discussed in

greater detail in Appendix E on the bounds of the diagnostic techniques.

The most obvious and consistent trend in ion density occurred with increases in

pressure. An investigation of the trends of ionization with all of the control parameters

may lead to further insight into electron dynamics in the Hall Electron Mobility

Gage. As was presented in Section 2.2.1 the mean free path decreases with increasing

pressure. At the lowest pressures investigated, the mean free path for electron-neutral

collisions (for argon) is nearly 300 m and for electron-impact ionization is > 900 m.

At the highest pressures investigated the mean free path for electron-neutral collisions

is 3 m and for ionization is 11 m. It is apparent that the reduction in mean free path

corresponds to a much higher chance of ionization. The dependence of ionization on
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magnetic field and electric field is less straightforward. For the magnetic field, even

though these results were not presented in graphical form, at the condition of zero

magnetic field, for all conditions of electric field and pressure, there was no measurable

ion current at the cathode. This is a result of the short path length of electrons within

the confinement volume. At zero magnetic field, electrons travel on straight paths

from the emission filament to the anode (∼ 0.3 m), which is much shorter than the

mean free path for ionization even in the highest-pressure condition. However, even

a small increase in magnetic field (even at the lowest field conditions explored where

the field ∼ 25 G) there was a notable ion density at the highest-pressure conditions.

With the application of a magnetic field the path length electrons take from filament

to anode is significantly increased.

Besides the desire to quantify ionization for practical reasons (diagnostics, etc.), it

is interesting to note that investigating ionization trends with electric field, magnetic

field and pressure may give insight into the type of mobility exhibited. The probabil-

ity of ionization increases when the path length for electrons within the confinement

volume approaches the mean free path for electron-neutral collisions. The existence

of ionization points to the obvious fact that collisions are taking place within the

Hall Electron Mobility Gage, where the transport may not be described by a strictly

collisionless mechanism (such as Bohm mobility). However, these results also suggest

that at low pressures, there is another mechanism driving transport, as negligible ion-

ization is observed even though electrons possess sufficient energy to ionize. Although

a quantitative analysis has not been thoroughly explored, there also may be insight

gained into the average path length for electrons based on a comparison of relative

ion density and mean free path. This is presented in Section 7.6.
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6.3.5 Collisions with Poles

The electron losses to the poles were hypothesized to be negligible based on the anal-

ysis of Section 5.3.2. In order to experimentally verify this claim, an investigation

of collisions with the poles was conducted by examination of the electron density in

response to the filament bias. At the condition investigated in Section 5.3.2, the elec-

trons were assumed to be emitted from the filament with negligible energy (filament

bias was assumed to be equal to unperturbed local potential), so that electrons would

be confined within the potential well. However, if the filament were biased sufficiently

negatively with respect to the unperturbed local potential, electrons would be able

to gain enough energy to escape the potential well and collide with the magnetic pole

material.

Electrons are emitted at a distance from the cathode (3 mm) where the depth

of the potential well is equal to the difference between unperturbed local potential

at the location of the filament and cathode potential (as shown in Section 4.5). The

local potential at the location of the filament is given by

φlocal,f = Vc +
∆zc−f

∆zc−a
Vac (6.9)

where Vc is the cathode voltage, ∆zc−f is the axial distance from the cathode to

the filament, ∆zc−a is the axial distance from the cathode to the anode, and Vac is

the anode to cathode voltage given by Vac = Va − Vc. As electrons travel through

the confinement volume they gain energy from the field and correspondingly, the

depth of the trap increases at the same rate. (This is explained in greater detail in

Section 5.3.2.) Therefore electrons emitted with very little energy at the surface of

the emission filament would never have enough energy to escape the potential well

(save for rare combinations of collisions that are responsible for filling the Maxwellian

tail of the energy distribution). However, if electrons start with energy equal to the

trap depth, they may easily escape the trap and collide with the poles. If an electron
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suffers one collision with the pole and is re-emitted, it will likely reach the other pole

(which is at the same potential) provided it is not scattered by a collision within the

confinement volume and will suffer another collision. This may contribute to mobility

in a way analogous to collisions with dielectric walls in a Hall thruster[47].

The filament heating circuit was biased using a voltage divider circuit between

the anode and cathode electrodes. A variable resistor (0 − 20 kΩ) was employed

between the cathode electrode and filament bias, in series with a 60.51 kΩ resistor

between the filament bias and the anode electrode, so that the filament bias could be

varied from cathode potential to ∼ 25 percent of anode potential (resistance values

indicated in Fig. 6.2). When the filament is biased at the local unperturbed potential

of the vacuum field (Vf = 10% anode potential∗∗), electrons only gain energy in

the direction of the field where the trap depth matches the energy gain and only

the highest energy electrons are able to escape the potential well. However, when

the filament is biased negatively with respect to the local unperturbed potential of

the vacuum field (Vf < 10% of anode potential) electrons are able to gain energy

transverse to the axial electric field (as can be seen by the potential distribution in

Fig. 4.12) which gives electrons higher energy relative to the depth of the trap. The

more negatively the filament is biased, the greater the energy that can be attained

by electrons, where if the filament bias is equal to the cathode voltage, the majority

of electrons would have energy sufficient to escape the trap.

First, electron emission was investigated as a function of filament bias. For five

heater currents, electron emission was measured for a range of filament voltages,

where the anode-to-cathode voltage was held constant at 100 V, and the magnetic

coil current was 0 A. The results are shown in Fig. 6.16. As the filament voltage

approaches cathode voltage (0% of Vac) the emission current remains constant. Con-

versely, for filament voltages above local unperturbed potential, where Vf > 10% of

∗∗The filament voltage expressed as a percentage of anode-to-cathode voltage is given by (Vf −
Vc)/Vac × 100% and local potential is (φlocal − Vc)/Vac × 100% = 10%.
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Figure 6.16: Emission current, Ie, versus filament voltage, Vf/Vac, for sev-
eral heater currents where the filament voltage is expressed as a percentage
of anode-to-cathode voltage.

anode potential, the emission current remains relatively constant until the filament is

significantly electron attracting at the point of ∼ 20 − 25% above local unperturbed

potential, and emission decreases significantly.

Electron density was measured for the same range of filament voltages where the

filament voltage was varied from 0− 25% of anode-to-cathode voltage, for a constant

electric field, magnetic field and pressure. Fig. 6.17 shows the electron density versus

filament voltage. As the filament voltage approaches the cathode voltage the electron

density shows a sharp decline. Since the emission current was found to be relatively

constant over this range of filament bias voltage, the change in electron was thought to

have been due to the electron dynamics within the confinement volume (rather than

an artifact of the loading mechanism). This sharp decline in electron density was an

indication that electrons were able to escape the confining potential well and were lost

through recombination. This result has two implications. 1.) Electron collisions with

poles result in decreased electron density, which suggest losses from the confinement

volume rather than collisions that result in enhanced mobility. 2.) Electrons may
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Figure 6.17: Electron density as a function of filament bias. Electric field,
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be "forced" out of the confinement volume, or by appropriately setting the filament

bias (at local potential) losses may be minimized. Mobility measurements were also

obtained versus filament bias and are presented in Chapter 7.

6.4 Summary

The characterization of the Hall Electron Mobility Gage resulted in a greater un-

derstanding of the trap operation. The most notable results of the characterization

are as follows. First, the ability to control electron density by the filament heater

current was confirmed, where electron density may be limited to the constraints pre-

sented in Section 5.2.2, and electron density may be varied over more than an order of

magnitude with changes in the filament heater current. Electron temperature inves-

tigations showed that electron temperature increases with electric field, as expected.

Electron temperature investigations also showed that under some conditions (namely,

the highest electric and magnetic fields investigated) a decrease in temperature with
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pressure was observed. These temperature measurements will be discussed in greater

detail in Section 7.6, where electron temperature may be investigated as a means to

characterize the transport exhibited. Ion density measurements showed an increase in

ion density and ion density fraction with pressure, due to the increased probability of

ionizing collisions as the mean free path for electron-neutral (and ionizing) collisions

was reduced. This is also discussed in greater detail in Section 7.6, as the ioniza-

tion may provide information on the path length of electrons within the confinement

volume. Finally, collisions with poles was investigated by an measurement of elec-

tron density as a function of emission filament bias, where the emission filament bias

controlled the initial energy of electrons upon electron loading into the confinement

volume. When electrons were given sufficient energy to escape the confining potential

well electron density decreased suggesting electron losses through recombination at

the magnetic pole material. This suggested that the result of collisions with poles was

recombination rather than a scattering mechanism to drive electron transport. This

is explored in Section 7.5.2 in terms of mobility versus filament bias. Through this

characterization the author has become more confident in the dynamics and inner

workings of the Hall Electron Mobility Gage so that reliable mobility measurements

may be obtained, as described in Chapter 7.
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Chapter 7

Mobility

The purpose of this chapter is to present the experiments and results of mobility

studies within the Hall Electron Mobility Gage. First, the methods for mobility mea-

surement and the overall testing methods are presented along with the process used

to calculate classical and Bohm mobility in Sections 7.1 through 7.3. The results of

mobility versus the control parameters of magnetic field, pressure, and electric field

are presented in Section 7.4. Non-classical mobility was exhibited in nearly all cases

where the difference between the observed mobility and classical mobility was outside

the realm of experimental error. The magnitude of the experimental mobility was also

compared with Bohm mobility where the magnitude of mobility in the Hall Electron

Mobility Gage was significantly lower than the Bohm description (using Bohm coef-

ficient of 1/16). In order to further understand the electron mobility exhibited in the

Mobility Gage additional studies were conducted investigating mobility in response to

changes in electron density, wall collisions, the probe perturbation and electrostatic

oscillations, which are presented in Section 7.5. These studies failed to provide an

explanation for the enhanced mobility but provided confirmation of certain assump-

tions previously cited (e.g. that Coulomb collisions and collisions with the magnetic

pole geometry were insignificant). Further analysis revealed supporting evidence for

a collisionless mechanism contributing to transport within the Hall Electron Mobility
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Gage, which is presented in Section 7.6. This evidence, combined with the dependence

of mobility on pressure, led to the conclusion that mobility within the Hall Electron

Mobility Gage may be driven by the combination of a collisional and a collisionless

mechanism. The experiments, results, and analysis described here are presented in

more detail in the following sections.

7.1 Mobility Measurement Strategy

The transverse mobility, µez, is defined as the constant of proportionality between

the cross-field velocity of electrons and the electric field orthogonal to the magnetic

field. For the geometry of the Hall Electron Mobility Gage this corresponds to the

axial (z) velocity, uez, and axial electric field, Ez, where the axial velocity is given by

Eq. (1.1) and to reflect the geometry of the Hall Electron Mobility Gage is given by

uez = µezEz (7.1)

In the Hall Electron Mobility Gage the electric field is known from the numerical

solution of the vacuum electrostatic configuration because the electron density is

sufficiently low and Debye length sufficiently long that the field can be assumed rigid

(Section 5.2). Therefore, only a measurement of the axial velocity was necessary

to determine the mobility. A measurement of current at the anode (with known

area, Aa = 0.099 m2) gives the axial current density, Ja = Ia/Aa, which, given a

measurement of electron density, provides the axial velocity, where

uez =
Ja

qne
(7.2)

Electron density was derived using the probe theory of Section 6.3.1 to interpret

the measured I-V probe characteristic. Thus, the cross-field mobility was evaluated

experimentally by combining the result of the probe sweep with the axial (anode)
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current so that

µez =
Ja

Ezqne

(7.3)

The approximation of Jez ∼ Ja assumes constant axial flux between the probe and

the anode, as the measurement of density was taken at the axial location of the

probe but the measurement of axial flux was taken at the anode. Any change in flux

corresponds to error in this approximation. In particular, any ionization that takes

place between the probe and the anode becomes a higher axial electron flux at the

anode, corresponding to a measurement of mobility that is artificially inflated. This

effect may be significant under some conditions, such as the high pressure condition

where ionization is significant (described in Section 6.3.4). (Any radial electron losses

through recombination at the magnetic core surfaces that take place between the

probe and the anode correspond to a lower axial flux at the anode, but this effect was

shown in Section 5.3 and Section 6.3.5 to be negligible.)

In order to account for the change in axial electron flux due to ionization, a

correction to the axial current density was applied in order to refine the trends.

The axial current density at the electron loading filament may be estimated by

Jez(zfilament) = Ie/Aa, and the electron density at the anode collection surface is

given by Jez(zanode) = Ia/Aa. Under conditions where ion density is significant

(ni > 0.10ne), Jez(zfilament) < Jez(zanode).

As a first order approximation, the axial current density was assumed to increase

linearly between the emission filament and the anode electrode. It is possible that the

density may not increase linearly with axial distance, but rather exponentially due to

cascading electrons ionizing or some other non-linear profile. However, this may be

a function of all parameters of electric and magnetic field and pressure and without

experimental data for spatial electron density variations, making any assumption of

the electron density profile would be suspect. A linear profile would be a conservative

estimate over an exponential profile, as the exponential profile would result in a
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greater correction to mobility measurements. Spatial ionization data in the similar

geometry of a planar magnetron discharge shows a roughly linear relation between

relative ionization and distance from the cathode (target) for the lowest pressures

examined[143]. Although the low-pressure condition in the planar magnetron was

higher than the pressures in the Hall Electron Mobility Gage, similar principles may

apply as the pressure is further decreased in the planar magnetron discharge. This

justification is by no means exhaustive, but gives credence to the use of a linear

approximation in lieu of a highly non-linear model (e.g. a model where the ionization

exhibits an exponential increase or extremum at some spatial location, which has

been shown to occur at higher pressures in the magnetron[144].) Further experiments

are outlined in Chapter 8 that would serve to create a more accurate account of the

ionization and effects on the diagnostics.

On the assumption that current density increases linearly from the loading source

to the anode, the resulting equation for current density as a function of axial position

may be given by

Jez(z) =
1

Aa

[

Ie +
(Ia − Ie) z

∆zf−a

]

(7.4)

where ∆zf−a is the distance from the loading filament to the anode, and z is the

position of interest where z = 0 at the filament and z = ∆zf−a at the anode. Therefore

a measurement of emission current is also required to determine the change in axial

flux with axial distance within the confinement volume.∗

The measurement of electron density was taken at the probe location where to

determine the cross-field mobility, the axial flux must also be determined at the

location of the probe. Therefore, the experimental electron mobility given in Eq.

∗In some cases a measurement of emission current was not obtained, where a statistical analysis
(presented in Appendix C) was employed in order to estimate the emission current based on known
parameters of E, B, pressure and anode current.
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Figure 7.1: Mobility versus pressure assuming constant axial flux (×) and
with the correction for non-constant axial flux (△).

(7.3) was modified and given by

µez =
Jez(zprobe)

Ezqne
=

1

Aa

[

Ie +
(Ia − Ie) zprobe

∆zf−a

]

1

Ezqne
(7.5)

In the case of no ionization Ie = Ia so Eq.7.5 reduces to Eq. 7.3 given Jez = Ia/Aa.

However, in the case of high ion density, such as in the case of high pressure, the cor-

rection may be significant, especially in exploring trends with pressure. An example

is shown in Fig. 7.1 where the uncorrected mobility and the corrected mobility are

shown. This correction does not change the order of magnitude of the measured mo-

bility but may help to refine trends, especially with pressure where ion density also

exhibits a strong trend with pressure (Section 6.3.4). Since the calculation of mobility

combines several experimental parameters with varying experimental uncertainty, the

error in the measurement of mobility is found through propagation of errors, which

is presented in Appendix D.

181



7.2 Classical and Bohm Mobility

A calculation of classical mobility and Bohm mobility were needed for comparison

of mobility results. In the investigations in the Hall Electron Mobility Gage the

Hall parameter (given by Eq. (2.43)) was > 1000 for all cases of magnetic field and

pressure. Classical (cross-field) mobility is given in Eq. (2.52) in the case of high Hall

parameter. In terms of the geometry of the Hall Electron Mobility Gage the classical

cross-field mobility is given by

µez =
νm

ωceBr
(7.6)

For the calculation of classical mobility an estimation of momentum-transfer collision

frequency and the magnetic field were needed.

The magnetic field strength was determined from the Maxwell SV[121] numerical

solutions where the verification of the numerical solution was presented in Section

6.2.1. For a particular case of coil current the magnetic field strength was taken to

be the average magnetic field strength over the axial profile of the magnetic field,

since the field varies 30% (0.90Bmax to 0.60Bmax, as described in Section 4.2) over

the confinement volume cross section. The axial profile was taken at the minimum

magnetic field indicated by profile #2 in Fig. 4.3.

The momentum transfer collision frequency was calculated based on the electron-

neutral collision frequency, since Coulomb collisions were found to be negligible (Sec-

tion 5.2.3). The electron-neutral collision frequency is given by Eq. (2.31) where n0 is

the neutral density, σ is the collision cross-section and v̄ is the electron velocity. The

neutral density was calculated using the ideal gas law given by Eq. (5.4), based on the

pressure measured with the B-A type ion gage. The electron velocity was calculated

from the measured temperature (described in Section 6.3.3) and given as the average

velocity of a Maxwellian distribution, v̄e =
√

8kTe/πme. The electron-neutral col-

lision cross section was estimated from the cross-section data provided in the Siglo
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database[3], which for argon is shown in Fig. 2.4. The cross section was found based

on the electron energy given by 3kTe/2, where the electron temperature was given

by the experimentally measured value. Bohm mobility was calculated using the same

magnetic field as in the case for classical mobility and is given by Eq. 2.65. In each

plot presented in Section 7.4 these values of classical and Bohm mobility are given to

reflect the range of parameters explored as indicated in each respective section.

7.3 Testing Methods

In order to investigate mobility the diagnostic method for measuring mobility, de-

scribed in Section 7.1, was used while employing the following test methods. This

section describes the randomizing test methods executed to measure mobility, in or-

der to minimize systematic error arising out of temporal facility effects. The testing

matrix used to examine the mobility trends with electric and magnetic fields and

pressure (neutral density) was randomized to reduce the error introduced by tempo-

ral and/or unknown facility effects. Methods were employed to completely randomize

the electric and magnetic field parameters (since these can be automated with reliable

repeatability) within randomized pressure "blocks." Temporal effects are expected as

a result of outgassing, among other unknown and unmeasurable quantities such as

emission filament variation or ambient temperature changes. Pressure was varied by

allowing a constant mass flow of the background gas into the vacuum chamber as

described in Section 6.2.2. Because of outgassing effects, a constant mass flow does

not necessarily correspond to the same pressure or the same partial pressure of argon

(or other background gas). To reduce variability of outgassing effects on the trends

observed in magnetic and electric fields, the pressure was varied within a random-

ized complete block design[145]. A randomized complete block design was chosen for

two reasons. First, varying and measuring the pressure (described in Section 6.2.2)

needs to be done manually while the rest of the system is disabled, and randomiz-

183



ing this into the entire test matrix is unfeasible due to time constraints. Moreover,

if the pressure were completely randomized (rather than "blocking"), differences in

outgassing may be introduced to contribute to the variability observed in the electric

and magnetic field data, where the error introduced may overwhelm the trends with

electric and magnetic field. Conversely, if the pressure were held constant for each

sweep of electric and magnetic fields, the variation in mobility due to electric and

magnetic field would arise out of the "true" differences in the fields, rather than out

of the differences in outgassing rates or any other variation, leading to the inability

to achieve the same pressure condition in each instance.

The method for all data acquisition for mobility measurements is presented in

Fig. 7.2. Variation in electric and magnetic fields was achieved through automated

means so complete randomization of these parameters was possible. For each "block"

of pressure, a matrix was constructed through a computational random number gen-

erator, which randomized the order of each combination of electric and magnetic field.

This was done for each parameter "sweep." A "sweep" of 10 magnetic field condi-

tions was taken for three pressure conditions and three electric field conditions. The

randomizing program created an output indicating the order for the experimenter to

execute the three pressure conditions (manually) and created a random order for the

execution of the 30 combinations of electric and magnetic field which were executed

within the LabView data acquisition program, within each pressure block. A new

matrix for the execution order of electric and magnetic field was computed within

each pressure block. Similarly, a "sweep" of 10 electric field conditions was taken for

three pressure conditions and three magnetic field conditions. The program directed

the experimenter to execute the pressure conditions in a specified order and the 30

conditions of electric and magnetic field were randomized in order of execution and

were automated by the data acquisition program in LabView. For the execution of

the pressure sweeps, the program indicated the order of execution for the 10 pressure

conditions and randomized the order of execution for the three parameters of electric
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Figure 7.2: Data acquisition method for measuring mobility in the Hall
Electron Mobility Gage.

and magnetic field (9 combinations total) within each pressure condition, where a

new execution order was determined for each pressure "block."

At each of the testing conditions anode current and emission current were recorded,

along with a probe sweep to find electron temperature and density for each combina-

tion of parameters. This test matrix was executed to investigate trends of mobility

with electric field, magnetic field and pressure and also for investigation of other

factors suspected to cause mobility (described in Section 7.5).

7.4 Mobility vs. Control Parameters

Mobility was examined in response to the parameters of magnetic field, electric field

and pressure according to the test method in Section 7.3. According to classical mo-
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bility, the cross-field mobility should scale as B−2, should scale 1:1 with pressure,

and should remain constant with E (as it is the constant of proportionality between

axial velocity and E). The trends of mobility with E, B and pressure may be inves-

tigated independently, which would not be possible in an operating Hall thruster (as

described in Chapter 3). The results of these investigations are presented along with

classical and Bohm mobility for comparison in the following sections. Error bars are

presented as calculated using the error analysis presented in Appendix D.

7.4.1 µez vs. Magnetic Field

Mobility was examined in response to magnetic field where sweeps of magnetic field

(10 conditions) were taken for several combinations of electric field and pressure. Test

methods described in Section 7.3 were used for randomization of the data acquisition,

and the diagnostics described in Section 7.1 were used to measure mobility. Results

of mobility versus magnetic field are displayed in Fig. 7.3 for two electric fields and

three pressure conditions (as noted). Error bars shown were calculated using the error

analysis presented in Appendix D.

Traces for classical and Bohm mobility are shown as thick solid and dashed lines,

respectively. The classical and Bohm mobility values are determined as a function

of magnetic field for the pressure conditions noted. These plots show that mobility

lies between classical and Bohm mobility. There was a general decrease in mobility

with increasing magnetic field where in most cases the change in mobility over the

range of magnetic field was statistically significant. However, within the bounds of

experimental error it is not possible to determine whether the experimental mobility

exhibits a B−2 or B−1 trend. Curve fits are shown in Fig. 7.3 for B−2 and B−1 scaling,

as solid and dotted lines, respectively, with the equation for the curve fit displayed on

each respective plot. It appears that the B−2 curve fit for the low pressure conditions

provides a better fit, where the B−1 curve fit for the high pressure conditions provides
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Figure 7.3: Experimental mobility versus magnetic field for an electric
field of 2.9 × 103 V/m (left) and 4.4 × 103 V/m (right) and a pressure of
1.5×10−6 Torr (top), 7.15×10−6 Torr (center) and 7.15×10−5 Torr (bottom).
Classical and Bohm mobility are shown as long dashed and short dashed lines,
respectively.
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a better fit. However, this is purely speculative as both curve fits lie within the realm

of experimental error for almost all conditions.

7.4.2 µez vs. Pressure

Mobility was examined in response to pressure (which may be equivalently expressed

as neutral density by Eq. (5.4)). The mobility investigation was conducted according

to the methods described in Section 7.3, and mobility was measured using the diag-

nostics described in Section 7.1. Mobility versus pressure was investigated for several

combinations of magnetic field and electric field, where results are shown in Fig. 7.4.

Again, the magnitude of the experimental mobility was found to be between the clas-

sical and Bohm values. There is a general increase in mobility with pressure where

in most cases, the change in mobility is statistically significant. A curve fit is shown

in Fig. 7.4 in the form µez = C1P
1.0 which is the classical scaling of mobility with

pressure. For the second curve fit the mobility was allowed to have a "collisionless"

component so the form of the curve fit was

µez = C1P
1.0 + C2 (7.7)

where C1 is the coefficient of the pressure dependent component (collision dominated)

and C2 is the "collisionless" component of mobility. The coefficients are shown on

respective plots. This curve fit seemed to match the data better than the purely clas-

sical scaling; however, the difference is so slight that this trend cannot be confirmed

without extending the range of pressure significantly lower.

7.4.3 µez vs. Electric Field

Mobility was examined in response to electric field for several combinations of mag-

netic field and pressure, according to the methods of Section 7.1 and 7.3. Results
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Figure 7.4: Mobility versus pressure for a magnetic field of 0.080 T (left)
and 0.0110 T (right) for an electric field of 2.9 × 103 V/m (top), 4.4 × 103

V/m (center) and 5.9 × 103 V/m.

are shown in Fig. 7.5. The values of classical and Bohm mobility are shown as long-

dashed and short-dashed lines, respectively. The magnitude of experimental mobility

is above the classical value by more than an order of magnitude and is also below
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Figure 7.5: Mobility versus electric field for a magnetic field of 0.080 T
(left) and 0.0110 T (right) for a pressure of 1.2 × 10−6 Torr

Bohm mobility. These results show that the experimental mobility follows neither

classical or Bohm mobility, where the difference is statistically significant. Within

the experimental error any trends of mobility with electric field cannot be resolved.

This only indicates that the axial velocity varies proportionally with E with µ repre-

senting the constant of proportionality. This was not unexpected as both classical and

Bohm mobility (and for that matter, any form of mobility, whether free, cross-field,

fluctuation-induced, etc.) do not vary with E. At low electric fields the mobility ap-

pears to increase as electric field is decreased. However, the small change in mobility

is not statistically significant and can not be resolved within the experimental error.

Representative cases are shown in Fig. 7.5, but this trend (constant µ with E) was

exhibited for all cases of pressure and magnetic field.

7.5 Other Mobility Investigations

7.5.1 µez vs. Electron Density

Mobility was not expected to vary with electron density as electron-electron collisions

do not result in net transport for electrons (p. 177 of Ref. [38]). Furthermore, if the
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Figure 7.6: Mobility versus electron density for three electric fields, as
indicated.

self-field of the plasma is in fact negligible, there would be no discernible variation

in electron dynamics with changes in electron density. To confirm these assumptions

the filament heater current was varied to vary the electron density over an order of

magnitude as described in Section 6.3.2, and mobility measurements were obtained.

Figure 7.6 shows the mobility as a function of electron density, ne. If electron-electron

collisions were responsible for transport, where the Coulomb collision frequency is

directly proportional to the electron density, a change in mobility would be evident

upon an order of magnitude change in electron density. The electron density had no

statistically significant effect on the electron mobility indicating that electron-electron

interactions were negligible over the range of electric field, magnetic field and pressure

investigated.

7.5.2 "Wall" Collisions

It was hypothesized that electron collisions with the magnetic pole geometry at the

confinement volume periphery could contribute to mobility by an effect analogous
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to electron-wall collisions in a Hall thruster. (Wall effects in Hall thrusters were

described in detail in Section 3.3.2.) The electron collision at the pole could result in

a specular reflection of electrons, which would in effect be analogous to an electron-

neutral collision acting on the time scale of the "bounce" collision frequency (described

in Section 5.3.3) rather than the electron-neutral collision frequency.

Collisions with the magnetic pole geometry were investigated in Chapter 6 where

an investigation of electron density versus loading filament bias (which was used to

vary electron energy with respect to the potential well depth) was conducted. This

was presented in Section 6.3.5. It was deduced from the investigation presented in

Section 6.3.5 that collisions with poles resulted in electron recombination at the poles

rather than a specular reflection and thus, enhanced mobility. However, a reduced

electron density could be observed in the case of a much higher electron velocity, as

well. Therefore, to confirm the initial supposition, the investigation was extended to

include mobility measurements in response to filament bias. The anode current and

the resulting mobility are presented in Fig. 7.7 where local unperturbed potential is

shown as a vertical dashed line. The anode current profile shows the same general

shape as the electron density profile (shown in Fig. 6.17) and thus the mobility

(which is roughly the ratio of Ia to ne) remains constant with filament bias voltage.

This indicates that even under the condition where electrons were "forced" out of

the confinement volume (by biasing the loading filament sufficiently) the only result

is electron recombination at the poles rather than enhanced mobility. Therefore, the

electron losses to the poles were regarded as an insignificant contribution to mobility.

7.5.3 Probe Configuration

The original mounting of the probe was axial through a slot in the anode, as shown in

Fig. 7.8 rather than radial, as is shown in Fig. 6.2 It was suspected that physical ob-

struction of the probe within the confining volume could lead to substantial increases
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Figure 7.7: Mobility versus filament bias.

Figure 7.8: Cross section of the Hall Electron Mobility Gage showing the
original mounting configuration of the probe (axial probe mount).
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in electron mobility by collisions of the electrons with the probe geometry. Electrons

encounter this obstruction on the order of the magnetron orbit frequency which is

greater than the electron-neutral collision frequency (see Table 5.1), up to three or-

ders of magnitude under some conditions. In addition, during each magnetron orbit,

electrons may have several "encounters" with the probe, since the bounce frequency

is greater than the magnetron orbit and may pass the geometry of the probe several

times. Furthermore, this obstruction was extended over the axial distance from the

probe to the anode (where the axial flux measurement was taken). The mobility

measurement represents an average mobility over the distance from the probe to the

anode. Therefore, in the distance from the probe to the anode, electrons have several

opportunities for encounters with the physical geometry of the probe. A collision

with the physical geometry of the probe would have a scattering effect analogous to

an electron-neutral collision frequency. Since the probe is insulated with heat shrink

tubing (rather than an exposed metal surface) electrons are not expected to be "lost"

upon collisions with the probe geometry, as with collisions with the magnetic pole

material (described in Sections 6.3.5 and 7.5.2).

It was also suspected that the probe, which is a conductor and thus a constant

equipotential surface, could perturb the vacuum field structure to cause an asym-

metrical effect that could lead to enhanced mobility. Since the probe is a conductor,

it provides an equipotential surface that extends perpendicular to the unperturbed

vacuum equipotential surfaces created by the parallel anode and cathode electrodes.

The perturbation in the potential structure creates an electric field radially outward

from the probe surface which, in some cases is azimuthal. An azimuthal electric field

(as described in Section 2.3) with a radial magnetic field creates an E×B drift in the

axial direction allowing electrons to axially cross magnetic field lines without colli-

sions. The perturbation of the probe extends a distance radially and azimuthally over

an axial cross section and the electron trajectories may encounter this perturbation

differently each "pass" depending on the bounce motion and the magnetron orbit.
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Since the encounter with the probe structure is not always at the same radial loca-

tion, the E×B displacement would be random. The net first-order effect is zero net

transport, since the E×B drifts would average to zero (much like that described by

Ref. [78]). However, Yoshikawa and Rose[78] show that randomized E×B drifts may

produce a second order effect that leads to net transport that is proportional to the

fluctuation amplitude or equivalently the variance of the displacement of E×B drifts

(Eq. (2.71) and (2.72)). Perez-Luna et al.[133] show the effect of an electrostatic

wave on a single particle trajectory. An effect similar to this (due to a randomized

azimuthal electric field perturbation) is hypothesized to exist in the Hall Electron

Mobility Gage.

In the radial configuration an attempt was made to minimize the perturbation

by extending the probe into the confinement volume radially along an electric equipo-

tential contour (which is also a magnetic field contour), as shown in Fig. 6.2. The

radial probe configuration minimizes both the electric equipotential perturbation and

the physical obstruction between the probe and the anode.

Mobility data were taken for sweeps of each parameter of electric field, magnetic

field and pressure at nine combinations of the other two parameters, and data were

taken according to the randomized complete block design presented in Section 7.3.

The results are presented in Fig. 7.11.

The magnitude of the measured mobility for both cases lies between the classical

and Bohm values. In all cases the radial probe configuration resulted in lower mo-

bility; however, the results were not statistically significant for all conditions due to

scatter in the data and measurement uncertainty. The probe configuration had the

most significant effect for the conditions of high magnetic field and low pressure. It is

unclear whether the reduction in mobility was due to the electrostatic perturbation

or the physical obstruction, which cannot be determined from this test. Future tests

incorporating electrostatic asymmetries without the physical obstruction (only field
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Figure 7.9: A comparison of axial and radially probe mounting configura-
tions showing mobility versus pressure (left) for constant electric field and
magnetic field and versus magnetic field (right) for constant electric field and
pressure.
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Figure 7.10: A comparison of axial and radially probe mounting configu-
rations showing mobility versus pressure (left) for constant electric field and
magnetic field and versus magnetic field (right) for constant electric field and
pressure.

perturbations) may be able to confirm the cause of the enhanced mobility. Nonethe-

less, for all other tests presented in this dissertation the radial probe configuration

was used.
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Figure 7.11: A comparison of axial and radially probe mounting configu-
rations showing mobility versus pressure (left) for constant electric field and
magnetic field and versus magnetic field (right) for constant electric field and
pressure.

7.5.4 Electric Field Oscillations

Axial electric field oscillations were hypothesized to exist due to the transmission

of switching noise to the anode and cathode electrodes. It was shown in Section

6.2.3 that filtering capacitors placed in parallel with the cathode electrode (shown

in Fig. 6.2) were effective in reducing the fluctuations especially in the 100-700

kHz range. This frequency is on the same order as the magnetron frequency (see

Table 5.1). It was thought that external oscillations that correlate with a dynamical

frequency of the electron plasma may contribute to the electron mobility (especially

since collective plasma effects are not able to shield the noise due to the long Debye

length). Therefore, mobility was examined in response to random oscillations in

the 100-700 kHz range by conducting mobility measurements with and without the

capacitors incorporated. The results of these experiments are shown in Fig. 7.12.

While electrostatic oscillations on the anode/cathode potential were significantly

reduced (shown in Section 6.2.3), the incorporation of filtering capacitors had no

significant effect on the measured mobility within the measurement uncertainty rep-

resented by the error bars.
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Figure 7.12: Mobility versus magnetic field for an electric field of 3.3 ×
103 V/m (top), 4.4 × 103 V/m (center) and 5.9 × 103 V/m (bottom) for
measurements taken with and without filtering capacitors incorporated at
the cathode electrode.
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7.6 Supporting Evidence of Non-classical Mobility

Corroborating evidence of non-classical mobility in the Hall Electron Mobility Gage

exists in addition to the absolute magnitude of the electron mobility measurement.

First, the electron temperature was found to exhibit non-classical trends, particularly

with pressure, where a decrease in electron temperature with pressure was observed

(Section 6.3.3). An analysis of electron temperature is presented in Section 7.6.1

where trends of electron temperature with pressure and electric field are explored

for Bohm mobility, classical Mobility and a combination of an unknown collision-less

mobility mechanism with classical mobility. This analysis was adapted from Ref.

[8], which predicts electron temperature due to various transport mechanisms. More

evidence supporting collisionless mobility comes from an analysis of the ionization

within the confinement volume. It was found that in inspecting the mean-free-path

for electron-neutral collisions and a peak in the ion density as it varies with electric

field, the path length and axial velocity of electrons within the Hall Electron mobility

Gage may be inferred, which agree with the measured mobility and thus axial velocity

of electrons. This analysis is presented in Section 7.6.2. These lend support for the

existence of a non-classical, collisionless mobility within the Hall Electron Mobility

Gage.

7.6.1 Electron Temperature Analysis

Results for electron temperature with variation of the controlled parameters of elec-

tric field and pressure were presented in Section 6.3.3. Some general trends of electron

temperature were shown to be statistically significant where the variation in electron

temperature over the range of the parameters investigated was greater than the ex-

perimental error. The trends observed include the decrease in electron temperature

with increasing pressure, particularly at high electric and magnetic fields and the in-
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crease in electron temperature with increasing electric field. On closer inspection it is

suggested that these trends indicate a collisionless transport mechanism. The reason-

ing for this interpretation is presented below. (The response of electron temperature

to neutral density was first presented in Ref. [118].)

An argument may be made that, given purely classical mobility, the axial profile

of electron energy should be unchanging with neutral density (pressure); conversely, if

electron temperature (at a particular axial location) were found to vary with neutral

density, a non-classical transport mechanism was present that was not dependent on

electron-neutral collisions. Assuming electrons are magnetized (large Hall parameter),

the number of total collisions required to traverse a given distance across the magnetic

field is fixed by the field conditions, regardless of how often collisions take place.This

may be realized by inspection of Eq. (2.55) which gives the axial step length of

magnetized electrons, which only depends on E and B. At constant electric field, the

total energy available to electrons is fixed as well. Electrons lose a certain amount

of energy through inelastic collisions with neutrals, which is dependent on incident

electron energy, where incident energy is governed by the energy gained from the

electric field and thus energy losses are also fixed by the field conditions. Therefore,

the net energy change for electrons as they traverse the confinement volume axially

is independent of collision frequency, since both the total number of collisions and

the energy gain and loss for an electron moving through the confinement volume are

fixed by the field conditions. In other words, the collision frequency would only affect

the total residence time of electrons in the trap (or equivalently axial velocity, uez),

but collision frequency would not affect the total energy gain and collisional cooling

effects as an electron traverses from the loading filament to the anode. (In the limit of

complete vacuum where collision frequency is zero, an electron will not move through

the confinement volume and will remain indefinitely in an azimuthal E × B orbit.)

Therefore, if collisions are solely responsible for cross-field mobility, the axial profile

of electron temperature (or electron temperature at a given axial location) will be
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constant with collision frequency and hence neutral density.

In the case of collisionless or anomalous mobility, electron temperature could

be dependent on electron-neutral collision frequency. To illustrate this, consider a

mechanism for cross-field electron mobility that allows electrons to move across the

field in complete absence of neutrals (vacuum condition). The time-of-flight required

to travel from cathode-to-anode would be finite regardless of collision frequency (in

contrast to collisional mobility where time-of-flight would be infinite in the absence

of collisions). The presence of neutrals would, however, affect the temperature of

the electrons because of collisional cooling; the degree to which electrons are cooled

depends on the number of collisions an electron encounters while moving through the

trap. In the limit of absolute vacuum an electron experiences no collisions and gains

the maximum amount of energy from the field, displaying a high electron temperature.

In the case of low neutral density, electrons are cooled as they suffer collisions during

their journey; as neutral density increases the amount of "cooling" would increase,

showing a decrease in Te as n0 is increased. It follows then that the observed variation

of electron temperature with neutral density is consistent with a mobility mechanism

that does not require electron-neutral collisions.

The second "non-classical" temperature trend is observed in the investigation of

electron temperature with electric field. Electron temperatures have been found to

increase proportionally with electric field, with the constant of proportionality de-

fined as a fraction of the total available energy, as shown in Fig. 6.13, but sometimes

to values that correspond to energy that is significantly higher than the excitation

or ionization energies for argon (where electron energy is given as Ee = 3kTe/2).

The electron temperatures are realistic given the amount of total energy available to

electrons from the applied field. However, energy is lost in excitation and ionization

collisions, as described by the analysis given below. At the highest electric fields the

electron temperature corresponds to an energy that is in some cases much higher than

the excitation and ionization energies of argon (11.5 eV and 15.8 eV, respectively).
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The values of measured electron temperature are not expected by classical theory

as the cross-section for excitation and ionization collisions increases rapidly at ener-

gies above the ionization/excitation threshold and inelastic collisions become much

more probable. Inelastic collisions would serve to "quench" the electron temperature.

Therefore, if only collisions were responsible for cross-field mobility, electrons would

gain energy until the electron energy was sufficient for excitation or ionization where

any energy gain in excess of the excitation/ionization energy would be lost in the next

collision. Electron energy for classical mobility, then, would be expected to approach

the excitation/ionization energy but then would remain constant, regardless of Vac or

axial distance traveled within the confinement volume. The measured electron tem-

peratures correspond to electron energy which is sometimes significantly higher than

the excitation or ionization energies, even within the realm of experimental error.

This type of electron temperature investigation (i.e. determining the type of mo-

bility based on analysis of electron temperature) is illustrated eloquently by Levchenko[8]

in the derivation of an electron energy equation for classical and Bohm mobility. This

equation accounts for energy gain from the electric field and energy losses due to ion-

izing collisions. Here the equations are adapted from Levchenko to reflect both the

nomenclature used throughout and the geometry of the Hall Electron Mobility Gage

(axial E, radial B). The change in electron thermal energy (of an electron population)

is given by
∂ǫe
∂z

= Ez − ψeǭi (7.8)

where Ez is the axial rate of energy gain due to the electric field, ψeǭi is the energy loss

per distance traveled and ǫi is the energy change (loss) per collision (in Levchenko[8]

this energy loss accounts for both the ionization energy loss from the incident electron

and the addition of the "born" electron in the electron energy distribution with energy

equivalent to the neutral density, i.e. very low energy). The energy loss per distance
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traveled (ψeǭi ) may be expressed as

ψeǭi =
νiǭi
uez

(7.9)

where νi is the ionization collision frequency given by

νi = n0 〈σionve〉 = n0

∞
∫

0

σi(ve)vef(ve)dve (7.10)

and uez may be found using the mobility coefficient and electric field (Eq. (1.1)).

Substituting the classical mobility coefficient and the Bohm mobility coefficient (Eq.

(2.52) and (2.65), respectively) results in equations (7.11) and (7.12):

∂ǫe
∂z

= Ez −
e

me

σi

σm

B2
r

Ez
ǭi (7.11)

∂ǫe
∂z

= Ez − n0σiv̄e
16Br

Ez
ǭi (7.12)

(the constant cross-section approximation has been made in these equations, which

does not have any consequence on the main point of presenting these equations—it

only removes an integral so it is more convenient to write)

Within these equations it is apparent that the energy in the classical solution is

not dependent on neutral density; however, the energy in the equation solved using

the Bohm mobility coefficient retains a dependence on neutral density. Equation

7.12 would retain the dependence on neutral density for any collisionless mobility

mechanism, where in the general case the energy equation is given by

∂ǫe
∂z

= Ez −
n0σiv̄e

µezEz

ǭi (7.13)

A numerical model was employed to determine the classical and Bohm electron energy

(and thus electron temperature where Ee = 3kTe/2) for the Hall Electron Mobility
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Figure 7.13: Electron temperature versus Ez (top) and versus P (bot-
tom) showing measured electron temperature and numerically derived elec-
tron temperature (solid lines, corresponding colors) for classical (left) and
Bohm (right) models based on the analysis of Ref. [8]

Gage, based on the energy analysis by Levchenko. Here, the step in distance was

fixed and the energy change was variable per step. In this analysis, electrons born

out of ionizing collisions were given an energy of 0.1 eV[146] and the total energy was

recalculated incorporating the "born" electrons into the distribution. The constant

cross-section approximation was used where the average energy per step was used to

determine the corresponding momentum-transfer and ionization cross sections. The

results to the classical and Bohm models for electron temperature with pressure and

electric field are shown in Fig. 7.13.

The electron temperatures calculated using the Bohm mobility model were much
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higher than measured values. However, given the order of magnitude of the exper-

imental mobility, which was always less than the Bohm mobility, it was suspected

that the Bohm model overestimated the axial velocity (and thus energy gain) so the

disagreement was not unexpected. Adapting the analysis shown above (Eq. (7.13)),

a third model was applied presenting an anomalous mobility constant in addition

to the classical mobility, which varies with neither B nor pressure and is given as a

constant of µAN = 0.005†. The energy equation in this case is given by

∂ǫe
∂z

= Ez −
n0σiv̄e

(µc + µAN)Ez
ǭi (7.14)

This analysis (of µAN) is in no way meant to be exhaustive, but is presented only

to qualitatively examine the effects of a constant "axial leakage current" that allows

electrons to traverse from anode to cathode in absence of collisions, which could

dominate at low pressures. The results of this analysis are presented in Fig. 7.14.

The "axial leakage current" model captures both of the "anomalous" trends noted

above. The "quenching" of the electron temperature with electric field is exhibited in

Fig. 7.13 (top left), where the "axial leakage current" model (Fig. 7.14, (top)) shows

the increase in electron temperature with electric field well beyond the ionization and

excitation thresholds, similar to what was observed. The variation of electron tem-

perature with pressure is exhibited in Fig. 7.14 (bottom). showing at least qualitative

agreement with observations, especially at high electric and magnetic fields.

The trends captured by the "axial leakage current" model at least qualitatively

agree with what is observed, particularly concerning the variation of electron tem-

perature with pressure. The trends of electron temperature represented by the "axial

leakage current" model also qualitatively agree with the trends of temperature with

electric field, where in the classical model the electron temperature is "quenched" at

†The choice of the value of µAN = 0.005 was largely arbitrary. The only justification for using
this value is that under higher pressure conditions, the classical mobility dominates (µclass > 0.005)
and under the lowest pressure conditions, the anomalous mobility dominates (µclass < 0.005).
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Figure 7.14: Electron temperature versus Ez (top) and versus P (bot-
tom) showing measured electron temperature and numerically derived elec-
tron temperature (solid lines, corresponding colors) for classical mobility with
the addition of a small anomalous component, based on the analysis of Ref.
[8]

a lower value but the "axial leakage current" model results in an electron tempera-

ture increasing more prominently with electric field. Although the classical model for

electron temperature is not far outside the realm of experimental error, the trends

are more fully captured with the "axial leakage current" model. This provides cor-

roborating evidence for a collisionless mobility mechanism in light of the mobility

measurements obtained. These results are encouraging and give credence to the ex-

istence of a collisionless mechanism contributing to the overall mobility in the Hall

Electron Mobility Gage.
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Figure 7.15: The ion density versus electric field for two conditions of
pressure at a constant magnetic field (red and green) and two magnetic field
conditions at a constant pressure (red and blue) (left) and the classical path
length given by Eq. (7.18) for the conditions noted.

7.6.2 Path Length Analysis

Besides the desire to quantify ionization for practical reasons (diagnostics, etc.), it was

found that ionization trends may give insight into mobility. The existence of ionization

points to the obvious fact that collisions are taking place within the Hall Electron

Mobility Gage, where the transport cannot be described by a strictly collisionless

mechanism (such as Bohm mobility). However, the ion density results also suggest

that at low pressures, there is another mechanism driving transport as negligible

ionization is observed, even when electrons have sufficient energy to ionize background

neutrals. In investigations where the electric field was extended beyond the field

conditions typically employed in the Hall Electron Mobility Gage experiments, the

ion density reached a peak value, where increasing the field beyond this point resulted

in decreased ionization (for constant pressure and magnetic field). Figure 7.15 shows

the ion density versus electric field for representative traces. In these plots there

is a discernible peak in ion density as the electric field was increased, where the

peak was shifted depending on the parameters of magnetic field and pressure. The

blue and red traces (× and △) show two different magnetic field conditions at the
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same pressure. The green (◦) and red (△) traces show the same magnetic field

conditions for two different pressures. The peak occurs at a higher electric field for

a higher pressure (peak∼pressure) and occurs at a higher electric field for a higher

magnetic field (peak∼magnetic field). This peak is thought to exist due to the tradeoff

between increasing energy (greater chance of ionization) and decreasing path length

for electrons within the confining volume. It is hypothesized that the drop off occurs

at the point where the path length for electrons becomes shorter than the mean free

path for ionization. Taking this one step further, this peak may be used to infer a

path length for electrons. The residence time for an electron within the confinement

volume (time required for an electron to travel from filament to anode) is given by

τres =
∆zf−a

uez
(7.15)

where ∆zf−a is the axial distance between the filament and the anode and uez is the

axial velocity. The average path length is given by

ℓ = v̄eτres (7.16)

where v̄e is the average thermal velocity. Substituting for the residence time, and

using the mobility equation for uez results in a path length of

ℓ =
v̄e∆z

µezEz
(7.17)

Classically the path length is given by

ℓ =
v̄eeB

2∆z

νenmeEz
(7.18)

The classically determined path lengths (corresponding colors) are shown in Fig. 7.15

(right) for each of the conditions presented in Fig. 7.15 (left). It would be logical

to deduce that the peak in Fig. 7.15 (left) occurs where the path length equals the
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mean free path for electrons. However, the path lengths found from the classical

equation are 2-3 orders of magnitude higher than the mean free path for each of these

conditions. It is likely (especially due to the non-classical mobility observed) that the

path length is much shorter than that which was classically determined.

The general equation (Eq. (7.17)) was used in reverse to determine the mobility

suggested by the peak in ionization. This method is illustrated as follows: if the path

length were set equal to the mean free path at the electric field, magnetic field and

pressure conditions of the peak, the mobility at which the equality would be satisfied

may be calculated as.

µez =
v̄e∆z

λmEz,peak
(7.19)

For the green trace the mean free path is 40 m (electron temperature was approx-

imated as 15 eV). Setting this equal to the path length, using the electric field of

4.9 × 103 V/m corresponding to the peak ion density, and using v̄e corresponding

with 15 eV electrons results in a mobility of 0.40 m2/(V-s), which is shockingly close

to that which was found experimentally (Fig. 7.5). (∆z in this case is 0.027 m.) For

the red trace, with the peak at E = 6.6×103 V/m and a mean free path of 13 m, the

mobility was found to be 0.90 m2/(V-s) which also agrees well with the data (Fig.

7.4). For the blue trace, with the peak at 7.5× 103 V/m and mean free path of 13 m,

the mobility was found to be 0.80 m2/(V-s). Unfortunately there was no experimen-

tal data for comparison at this electric field condition, however, qualitatively this is

lower than the previous (red) trace, which given the higher magnetic field, is plausible.

These values of mobility are in striking agreement with the experimental results and

even exhibit the right trends (lower mobility for lower pressure and higher magnetic

field). Although, the limited data makes this analysis suspect and far from conclusive,

it surprisingly exhibits remarkable agreement with the experimental results.
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7.7 Summary

The order of magnitude of mobility observed is 20 to 100 times the classical value and

only approaches the classical value (where classical mobility lies within the bounds

of experimental error) at the highest pressures investigated. It was observed that

the mobility tends to decrease with magnetic field where the decrease is statistically

significant. However, within the bounds of experimental error it was not possible

to determine whether the experimental mobility exhibits a B−2 or B−1 trend. A

curve fit was applied to the experimental data, where the trend of mobility with B

showed less than B−2 scaling under some conditions where the B−1 scaling agreed

better with the experimental data; however, a curve fit of B−2 still falls within the

error bars representative of the experimental uncertainty in those conditions. In

general, the experimental mobility increased with pressure, but yet again, it is not

possible to discern whether the experimental mobility exhibits classical (1:1) scaling

with pressure within the experimental error. It appears that the mobility exhibits

more classical scaling at higher pressures and at lower pressures another mechanism

dominates where the mobility fails to continue to decrease with decreasing pressure,

although this is merely speculative. (Future work includes construction of a high

vacuum facility to extend the pressures 2-3 orders of magnitude lower to examine this

trend.) The mobility does not exhibit any decisive trend with electric field, which

confirms the definition that mobility as a constant of proportionality between the

axial velocity and electric field.

Although trends could not be resolved within the experimental error, classi-

cal trends appear to be at least qualitatively represented where mobility increases

with pressure, decreases with magnetic field and remains constant with electric field.

Therefore, the mobility mechanism is thought to either exhibit similar trends to clas-

sical or it is possible that the mobility mechanism in the Hall Electron Mobility Gage

exhibits a combination of classical mobility with an anomalous component. The latter
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is speculated to be likely due to the apparent "flattening" of mobility with further

decreases in pressure, pointing to a constant mobility at low pressures. These state-

ments are purely speculative since they cannot be resolved within the experimental

error.

The experimental mobility was higher than the classical mobility, where this dif-

ference was statistically significant within the experimental error, and lower than

Bohm mobility, also statistically significant within the experimental error. It is unde-

niable that non-classical mobility was observed in the Hall Electron Mobility Gage.

The following measurements and trends confirm the existence of collisionless and/or

enhanced mobility in the Hall Electron Mobility Gage:

1. The magnitude of the directly measured mobility is 20-100 times the classical

value of mobility

2. The trends of electron temperature, especially the variation of temperature with

pressure, support the existence of a collisionless mobility mechanism.

3. The peak in ion density with electric field suggests a path length much shorter

than the classical path length for electrons within the confinement volume. The

mobility suggested by this analysis does not agree with the classical value but

shows remarkable agreement with experimentally measured mobility.

Other mobility experiments conducted failed to provide the source of the en-

hanced mobility, where the mechanism responsible for mobility in the Hall Electron

Mobility Gage remains elusive. However, the experiments presented herein provide

insight into what is not causing the enhanced mobility. These are as follows:

1. The investigation of the trap loading effects (particularly in the variation of the

filament bias) indicate that collisions with pole geometry were an unlikely cause

of enhanced mobility. This, with the absence of dielectric walls, rules out any

analogy to near wall conductivity.
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2. Coulomb collisions due to electron-electron interactions were ruled out by the

measurements of electron density.

3. The indiscernible change in mobility upon the dampening of noise on the elec-

trodes (responsible for axial electric field oscillations) suggested that mobility

was not caused by external circuit noise introduced at the anode and cathode

electrodes in the range of 100-700 kHz.‡

4. Bohm mobility was disregarded due to the absence of oscillations, the mobility

magnitude, and the electron temperature analysis

The mobility was affected by both the magnetic field misalignment and the probe

configuration. The magnetic field distortion due to the saturation of the inner mag-

netic core material produced enhanced mobility at high magnetic field conditions,

shown in Appendix B. The correction of the distortion was presented in Section

6.2.1 but failed to produce classical mobility. The probe configuration also did have

a statistically significant effect under some conditions where the axial probe configu-

ration produced higher mobility, and although the radial probe configuration served

to reduce the mobility, the new configuration also failed to bring the experimental

mobility to the level of classical mobility. Both of these effects were "corrected" and

yet classical mobility was not observed. Measurements of mobility have yet to be

taken in complete absence of the probe where the path length analysis provides a

possible means for investigating the contribution of the probe to the overall mobility.

Several mechanisms that are hypothesized to be responsible for electron mobility

in Hall thrusters were absent in the Hall Electron Trap. Collective plasma oscil-

lations are negligible compared to the thermal motion of the electrons (given as a

consequence of the long Debye length) so that instabilities will not lead to the growth

and propagation of plasma waves within the plasma. External oscillations are also

‡A similar effect was postulated by Eggleston in Penning trap experiments with the same indis-
cernable result[112].
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tentatively precluded by investigation of axial oscillations in the 100-700 kHz range;

however, higher frequency oscillations have yet to be explored. Near wall conduc-

tivity is the other leading theory for the mechanism of enhanced mobility in Hall

thrusters. The dielectric walls were physically absent in the Hall Electron Mobility

Gage and collisions with magnetic poles were found to be negligible based on both the

theoretical analysis presented in Section 5.3 and the experimental analysis presented

in Sections 6.3.5 and 7.5.2. The experimental mobility found in the Hall Electron

Mobility Gage was on the whole, lower than the mobility in Hall thruster plasmas,

so the possibility of these mechanisms (wall effects and oscillations) contributing to

mobility still exists. However, the notable result of these experiments is that without

these effects, mobility remains non-classical.
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Chapter 8

Conclusions & Future Work

8.1 Contributions of This Work

The achievement of this work has been to recreate anomalous mobility in an E × B

drift device, the Hall Electron Mobility Gage, that provides insight into mechanisms

that could cause mobility in Hall thrusters and other similar configurations. There

is little doubt that non-classical and non-Bohm mobility was exhibited in the Hall

Electron Mobility Gage. Besides the order of magnitude mobility observed, there were

several observations that provided corroborating evidence of a collisionless transport

mechanism which resulted in electron cross-field mobility in excess of the classical

value. The source of the enhanced mobility remains unknown, but the two most

cited contributors to mobility in Hall thrusters, wall effects and oscillation-induced

or Bohm mobility, were shown to be absent. The mobility observed in this device

was lower than what has been typically observed in Hall thrusters, so the findings

presented in this document do not negate the possibility of one or both of these

effects contributing to Hall thruster mobility. However, this work has identified the

existence of another mobility mechanism, inherent in these devices, which is higher

than classical mobility and has not been previously identified.

215



In the design of the Hall Electron Mobility Gage, the electric and magnetic field

geometry of a Hall thruster was replicated, both in magnitude and shape. The re-

sulting dynamics of charged particles within the fields exhibit comparable behavior.

Ions are unmagnetized, the electron gyro-motion is the highest frequency micromo-

tion, followed by a bounce frequency where free streaming electrons oscillate radially

within a potential well, and a magnetron frequency where the E ×B drift causes an

annular orbit. Electrons are also influenced by an axial electric field which drives

axial transport. These field conditions and dynamics are analogous between the Hall

Electron Mobility Gage and the Hall thruster. The Hall Electron Mobility Gage ex-

hibits two distinct and significant deviations from the environment of a Hall thruster.

These are the absence of collective plasma oscillations and the absence of dielectric

walls, both being cited as the dominant contributors to cross-field electron mobility.

These two contributors were absent in the Hall Electron Mobility Gage, where this

claim was confirmed both analytically and experimentally.

First, the Hall Electron Mobility Gage does not support collective plasma oscil-

lations. This statement was initially validated (presented in Section 2.1.3) by the

analytical model presented by Pines and Bohm[57] where on length scales small com-

pared to the Debye length, collective plasma effects become insignificant and the

motion is dominated by thermal motion, that must be described on a single-particle

level. The Debye length of the plasma in the Hall Electron Mobility Gage was con-

trolled to be much larger than the confinement volume dimensions by maintaining a

low-density and high temperature plasma. These conditions were confirmed exper-

imentally through measurements of electron temperature and density and based on

the measurements combined with the derivation of Pines and Bohm, it was antici-

pated that collective plasma oscillations would not be sustained in the Hall Electron

Mobility Gage.

Very obviously the physical absence of dielectric walls removes the near-wall

conductivity, proposed to exist in Hall thrusters. However, it was presumed that
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collisions between electrons and the physical geometry of the magnetic pole material

in the Hall Electron Mobility Gage may contribute to mobility in a similar way

to wall effects in Hall thrusters. Through a velocity space analysis (presented in

Section 5.3) it was found that due to the depth of the confining potential well, the

energy of the trapped electrons and the slow energy diffusion (which would serve to

"fill" the Maxwellian tail of the energy distribution) collisions with magnetic pole

geometry were expected to be infrequent under the condition of a "deep" potential

well relative to the electron energy. "Wall" collisions were investigated experimentally

where collisions with poles were "forced" by varying the emission filament bias to be

strongly electron repelling. Significantly reduced electron density in this case was

observed presumably due to electron losses at the magnetic poles. However, even

under the condition of reduced electron density mobility remained unchanged, where

the electron collisions with the poles produced electron losses due to recombination

rather than an enhanced mobility. Upon increasing the emitting filament bias (to the

local potential at the location of the filament) a stable electron density was maintained

with few electron losses. The analytical and experimental results suggested that

collisions with the geometry of the magnetic poles were insignificant.

Three independent sources were all in support of the fact that a collisionless mo-

bility mechanism was present in the Hall Electron Mobility Gage. First, the order

of magnitude of measured mobility was 20 to 100 times the classical value. Second,

the trends of mobility with electron temperature, particularly the variation in tem-

perature with pressure, suggested a non-classical mobility mechanism. Furthermore,

the strong increase in temperature with electric field well beyond the excitation and

ionization potentials, which would serve to "cool" electrons, suggested that collisions

were not the only mechanism of transport. The final effect supporting non-classical

mobility was the analysis of the path length of electrons, where a peak in ion density

was observed with variations in electric field. On the premise that the peak in the

ionization equates with the point where the path length was equal to the mean free
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path, mobility was inferred by the equation for path length presented in Section 7.6.2.

The mobility deduced by the path length analysis exhibited striking agreement with

experimental measurements of mobility under the same conditions. Furthermore, the

path length suggested by the classical model was much too long for this phenomenon

(the peak in ion density) to exist. In this analysis, the number of data points were few,

but the agreement warrants further investigation into this method of experimentally

measured mobility. The order of magnitude, combined with the temperature and

ionization trends with variations in control parameters, provided convincing evidence

that non-classical mobility was in fact present.

Other investigations were conducted in order to assess possible mechanisms for

non-classical mobility. The probe configuration was investigated for both electrostatic

and physical perturbations. Also the magnetic field-electrode alignment was investi-

gated for all field conditions explored. Both of these did have an effect on mobility.

However, upon "correction" of these effects, the observed mobility still did not behave

classically. The investigation of mobility with variation in electron density also ruled

out the effect of electron-electron Coulomb collisions, where the Coulomb collision

frequency is a direct function of electron density. Finally, external electrostatic field

oscillations were investigated resulting in no discernable effects. These investigations

provided great evidence to what the non-classical mobility mechanism is not, yet the

mechanism driving the anomalous mobility has yet to be identified.

The trends of the measured mobility with controlled parameters exhibit some

evidence of collisional classical mobility including an increase in mobility with pres-

sure, decrease in mobility with magnetic field and no statistically significant change in

mobility with electric field. Although inferring the functional relationship of the mo-

bility trends with magnetic field and pressure is purely speculative within the realm of

experimental error, it was noted that the relation of mobility with pressure exhibited

less than 1:1 (especially at low pressures) and the relation with magnetic field may

scale with B−1, where neither trend would be expected of classical. If the apparently
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non-classical trends are found to be statistically significant upon further investigation

it would be likely that the total mobility is a combination of collisional mobility and

an anomalous component. (These trends may be refined upon obtaining additional

experimental data and refining diagnostics techniques.)

A remaining possibility for a mechanism driving enhanced mobility is a mecha-

nism that is inherent in the geometry of the E×B drift device. E×B drift devices,

used mostly for plasma propulsion or material processing, have been plagued by

anomalous mobility since their inception. The applications where these devices are

used require a relatively dense plasma (relative to the plasma in the Hall Electron

Mobility Gage among other non-neutral plasma devices). The experiments performed

on these devices have typically been plagued by the confounding factors of a turbulent

plasma combined with complicated plasma self-field structures (wall-sheath effects,

etc.). Because of the requirements of these applications, the reduction of plasma

density in order to reduce the plasma environment to quiescent, non-oscillating, and

uncoupled has never been attempted. While classical (or near classical) transport

has been observed in the geometry of a Penning trap, classical transport has never

been observed in an E × B drift device. The results of these experiments lead one

to believe that an E × B device may not be capable of exhibiting classical mobility

(because gosh darnit, we tried) due to the inherent geometry of the device. The

existence of a transport mechanism introduced at the reflection at the radial periph-

ery due to the confining potential has been proposed by Thomas[55], which is based

on single particle effects and would be present in the Hall Electron Mobility Gage.

The mobility in the Hall Electron Mobility Gage remained 20-100 times the classical

value, where identifying and/or eliminating the anomalous mechanism for mobility in

the Hall Electron Mobility Gage may provide gains for several types of E × B drift

devices.
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8.2 Future Work

As is always the case, this experimental investigation led to just as many (probably

more) questions as conclusions. Several goals and proposed methods are presented

in this section for the future of this project to confirm, validate, and/or test new

hypotheses.

8.2.1 Refinement of Diagnostic Techniques

It was identified in Section 6.3.4 that in certain cases ionization is significant so that

the non-neutral probe theory may no longer be valid. Appendix E explores the possi-

bility of applying an adapted form of neutral probe theory in these cases. Refining the

diagnostics in this way may lead to more accurate measurements of density, tempera-

ture and ultimately mobility. Upon application of this theory, trends in experimental

mobility may be more adequately resolved, especially at high pressures where ioniza-

tion was found to be significant. However, an analytical analysis is needed to account

for the ion flow velocity which deviates from neutral probe theory in an ambient

plasma.

It was also identified in Sections 7.1 that the existence of ionization between

the probe and cathode provide a non-constant axial electron flux, which affects the

measurement of mobility. In the data presented in Chapter 7 a correction was applied

to the mobility (described in Section 7.1) in attempts to rectify the error introduced

by this effect. However, the correction factor assumed a purely linear axial variation

in electron density due to ejected electrons from ionization. This was a rough analysis

where improvement would be possible and necessary to refine the experimental trends

of mobility with control parameters. In order to account for this apparent error, a

local measurement of axial flux may be obtained so that the change in axial flux

would be inconsequential (since density and axial flux would be measured at the
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same axial location). The local axial flux measurement would be difficult in that

presently, the current measured on the anode (Aa ∼ 1 m) is on the order of ∼ 1 µA.

A probe to measure axial flux, with collection area of ∼ 5 × 10−6, would mean

measuring currents on the order of pA. While this is well above the fundamental limit

for current measurements, noise and other errors may overwhelm the measurement.

If instrumentation limits this measurement (due to noise and/or low axial current) a

better axial profile of electron density may be employed to produce a more accurate

correction to the difference in axial flux between the probe and anode.

8.2.2 Path Length Analysis

The striking agreement in the mobility obtained through the "peak ionization" method

with independent experimental measurements of mobility, presented in Section 7.6.2,

warrants further investigation. It was assumed a priori that the peak in ion density

with changes in magnetic field would occur at the point where the path length of

electrons in the confinement volume (ℓf−a) begins to fall below the mean free path

for electron-neutral collisions (λm). This statement must be analytically verified. On

the assumption that the peak in the ionization does equate with the point where

λm = ℓf−a, this may present another method of determining mobility within the Hall

Electron Mobility Gage. The mobility deduced by the path length analysis has strong

agreement with experimental measurements of mobility under the same conditions.

However, the number of data points where this analysis was carried out was few so

these results need confirmation. This method may provide a way to assess the in-

fluence of the electrostatic probe. Although the measurements presented in Section

7.6.2 were taken with the probe physically in place (floating), the diagnostics in the

path-length analysis do not require the electrostatic probe. Thus, this method allows

for mobility measurements in absence of the probe so that a comparison may be made.
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8.2.3 Low pressure operation

It was speculated that the trends with pressure tend to "flatten" at low pressure where

further decreases in pressure do not correspond to any decrease in mobility. Rather

the mobility maintains a constant value hypothesized to be collisionless and thus not

affected by background pressure. However, over the range of pressures explored, the

mobility trend with pressure cannot be confirmed. Therefore it is proposed that a

new experimental setup be created that may allow for pressures lower by 1-3 orders of

magnitude. While in this experimental setup, this trend only begins to be apparent,

extending the pressures lower will either confirm or deny the existence of this trend.

Low-pressure investigations have been conducted in Penning trap and other non-

neutral plasma experiments which have resulted in successfully identifying additional

transport mechanisms such as asymmetry-induced transport[147], the theory of like-

particle collisions [35], and resonant particle transport[112].

8.2.4 Investigation of "Bounce" Mobility

There is no known effect that would contribute to mobility in the Hall Electron Mo-

bility Gage that would not also be present in a Hall thruster (save for the presence of

the electrostatic probe, but it is thought to be highly unlikely that the probe entirely

accounts for the enhanced mobility). A remaining possibility is an effect inherent in

the geometry of the Hall configuration. Enhanced mobility was also observed in mag-

netron discharges (both planar and classic), which have slight variations in geometry

but also exhibit the Hall type "confinement" mechanism for electrons. In all of these

devices electrons freely stream on magnetic field lines making many radial (or axial

in the case of the classic magnetron) bounces, where the "bounce" frequency is only

superceded by the electron gyro-frequency, and is much higher than the magnetron

frequency and classical collision frequency (for both electron-neutral and Coulomb

collisions). The bounce frequency was determined in the Hall electron mobility gage

222



to be on the order of 1×107 Hz (based on a harmonic potential well with the approx-

imate geometry and field conditions of the confinement volume). If this frequency

were used in addition to the electron-neutral collision frequency in the classical equa-

tion the mobility would fall on the same order of magnitude as the observed mobility

(Fig. 8.1). The following equation was used for "Bounce" mobility in Fig. 8.1:

µez =
νm + νbounce

ωceB
(8.1)

Furthermore, at the "turning point", where electrons are reflected back toward

the center of the confinement area, a drastic change in electric field is experienced

on a similar time/length scale as a gyro-orbit, where the electric field is aligned

perpendicular to the magnetic field at the center and nearly parallel to the magnetic

field at the turning point. A similar change in electric field is exhibited in all of

these devices: at the "target" cathode in magnetron discharges, at the pole geometry

of the Hall Electron Mobility Gage, and at the dielectric sheath in a Hall thruster.

The change in field conditions over a gyro-orbit calls into question the guiding center

theory typically used to describe electron dynamics in these field conditions. This

presents compelling evidence for geometrical effects.

Experimental, computational, and analytical techniques may be employed in or-

der to investigate the effects of the "bounce" on the micromotion of electrons. The

thought that the phase of the electron upon reflection from the sheath (or in the Hall

Electron Mobility Gage, the confining potential well) may affect the motion of the

particle has been previously suggested. This notion was investigated analytically by

Thomas[55] and Keidar[84], where efforts are ongoing. This may be investigated ex-

perimentally by creating a modified Hall Electron Mobility Gage where the "bounce"

frequency may be varied and effects explored.
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Figure 8.1: "Bounce" mobility using Eq. (8.1) showing mobility on the
same order of magnitude as experimental observations.
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Appendix A

Machine Drawings of Mobility Gage

Figure A.1: Assembled Hall Electron Mobility Gage
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Figure A.2: Anode Electrode
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Figure A.3: Cathode Electrode
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Figure A.4: Backplate, geometry and bolt pattern
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Figure A.5: Backplate, cutouts
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Figure A.6: Front plate, center
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Figure A.7: Front plate, outer

Figure A.8: Center Pole
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Figure A.9: Outer cylinder
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Appendix B

Magnetic Field Tuning

The saturation of the inner magnetic core material of the Hall Electron Mobility Gage

resulted in a distortion of the magnetic field, where if the coil currents on the inner and

outer magnetic coil were increased proportionally, the magnetic field lines no longer

coincided with the electric equipotential lines and the anode and cathode electrodes.

This is described in more detail in Chapter 4 and Chapter 6. Maxwell SV[121] was

used to numerically model the magnetic field using the B-H curve for the material.

Using the magnetic field models an "ideal" outer coil current was determined for each

inner magnetic coil current so that the shape of the magnetic field was maintained

upon increases in magnetic field magnitude. The procedure for the experimental

verification of the "ideal" coil currents was described in Section 6.2.1. The complete

set of data used to find the "ideal" coil currents is presented in Fig. B.2.

Mobility versus magnetic field was taken prior to the incorporation of the mag-

netic field tuning procedure and is shown in Fig. B.3. Figure B.3 presents mobility

measurements taken in response to magnetic field for a constant electric field and

pressure. (Data for determining the experimental error were unavailable for the "No

B-field Tuning" case.) The effects of the magnetic field tuning are significant as shown

by the "tuned" case in Fig. B.3 where ideal coil currents (presented in Section 6.2.1)
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Figure B.1: Data for the magnetic field tuning procedure outlined in Section
6.2.1

were employed in the magnetic field variation. This is one representative case, where

similar results were found for different electric fields and pressures. For all other mo-

bility data presented within this document the magnetic field variation was achieved

by using the ideal magnetic coil currents based on the data presented in Section 6.2.1.
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Figure B.2: Data for the magnetic field tuning procedure outlined in Section
6.2.1
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Appendix C

Emission Current Estimation

Ionization that occurs between the probe and the anode causes the axial electron

flux to vary spatially within the confinement volume. More specifically the ionization

causes the axial electron flux to increase with axial distance from the loading filament

to the anode collection area. In the determination of mobility, the combination of a

density measurement with a measurement of axial flux gives a measure of axial veloc-

ity (from which electron mobility is directly determined as electric field is prescribed

and known). The axial flux was measured at the anode with the approximation of

Ja ∼ Jez(zprobe). However, in cases where the ionization is high this approximation

would not be valid (as described in Chapter 7). In order to account for the varia-

tion in axial electron flux, the electron flux was postulated to increase linearly from

the location of the loading filament to the anode electrode according to Eq. (7.4).

This requires a measurement of emission current, Ie, which was not obtained for all

experiments. Rather than repeating all past mobility experiments, a statistical anal-

ysis was explored for a possible method to estimate Ie in the cases where data for

Ie was not available. This required one test where Ie and Ia were recorded for a

large parameter space, rather than repeating all other tests for mobility. It was found

that Ie was highly predictable with very little error if conditions of electric field, E,

magnetic field, B, pressure, P and anode current, Ia were known. These parameters
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were recorded and/or measured for all mobility experiments. Therefore the statistical

model was employed to estimate the emission current in the cases where Ie was not

measured directly. The statistical model was based on experimental data of Ie and

Ia taken over a parameter space of E (Vac), B and pressure, where the development

of the statistical model is described as follows.

The anode current was measured in all experimental investigations of mobility.

The difference between the emission current and the anode current comes from the

ionization that occurs under certain conditions. An increase in pressure was primarily

responsible for increases in ion density (shown in Section 6.3.4), where although to a

lesser extent, electric field and magnetic field also had an effect on ion density. Since

ionization varies with all of these parameters it is important to have an estimation

of emission current that is a function of E (Vac), B and pressure. Data for filament

emission current and anode current were taken for a parameter space of electric field,

magnetic field, and pressure, and the following model was developed to estimate the

emission current for the cases where the data for Ie was not obtained. (Prior data

sets were obtained where the importance of Ie in the measurement of mobility was

not yet known.)

The filament emission current has been found to vary temporally and between

different filaments. (i.e. For a given filament heater current, the emission current has

been found to vary throughout a test and between tests.) These effects cannot be

controlled, nor can they be measured easily or accurately. Therefore, an investigation

has been done to establish whether changes in the filament heater current affect

the ratio of emission current to anode current (since the relative difference is what

is important). For a constant pressure, filament heater current was varied for all

combinations of three conditions of magnetic field and four conditions of electric field

(12 total combinations) and measurements were taken of emission current and anode

current versus filament heater current. A small backflow of argon kept pressure

constant at 5 × 10−6 Torr. Here, a ratio of anode current to emission current is
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Table C.1: ANOVA table for ln(Ie/Ia) using Ih as a predictor.

Regression Equation ln(Ie/Ia) = 0.192 + 0.177Ih
Predictor Coef SE Coef T P

Constant 0.1922 0.6068 0.32 0.752
Ih 0.1768 0.2705 0.65 0.515
S = 0.179773 R2 = 0.4% R2(adj.) = 0.0%

Analysis of variance
Source DF SS MS F P
Regression 1 0.01381 0.01381 0.43 0.515
Residual Error 114 3.68431 0.03232(MSE)
Total 115 3.69812

measured as the dependent variable to model as a function of filament heater current,

electric field and magnetic field. The data obtained for ln(Ia/Ie) versus filament heater

current are shown in Figs. C.1 through C.4.∗ A simple linear regression predicting

ln(Ia/Ie) verses filament heater current was performed with the results presented in

the ANOVA table, Table C. All of the statistical results indicate that the heater

current, Ih, is not a strong predictor of ln(Ie/Ia). The R2 for this simple regression

is less than 1% where the R2 represents the percent of the variance in the values of

ln(Ia/Ie) that can be explained by knowing the value of Ih. The resulting R2 shows

that (almost) none of the variance in ln(Ia/Ie) is explained by Ih. This was a desired

result as data for Ih was absent in the same cases where data was missing for Ie.

Next, a multiple regression was performed, including E (Vac) and B as predictors,

where the results show that E (Vac) and B were much more influential in ln(Ia/Ie)

than the filament heater current. The results of the regression are shown in Table

C. These results indicate that ln(Ia/Ie) was much more heavily influenced by the

electric and magnetic fields and there was very little influence due to the filament

∗The natural log is generally used in the case of ratio quantities in order that the error follows a
normal distribution.
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Table C.2: ANOVA table for ln(Ie/Ia) using Ih, Vac, and B as predictors.

Regression Equation ln(Ie/Ia) = −0.837 − 0.009Ih + 0.000251Vac + 36.8B
Predictor Coef SE Coef T P

Constant -0.8372 0.3395 -2.47 0.015
Ih -0.0092 0.1492 -0.06 0.951
Vac 0.00025070 0.00001773 14.14 0.000
B 36.842 4.486 8.21 0.000
S = 0.0988402 R2 = 70.4% R2(adj.) = 69.6%

Analysis of variance
Source DF SS MS F P
Regression 3 2.60395 0.86798 8.85 0.000
Residual Error 112 1.09417 0.00977(MSE)
Total 115 3.69812

heater current. Attempts have been made to keep the filament current constant

during other tests so the temporal variations (which will be less than the imposed

variations during this test) are expected to contribute very little to the variation in

ln(Ia/Ie). (The exception to this is the data obtained in Sections 6.3.2 and 7.5.1.

However, the emission current was directly measured in these experiments so the

prediction if Ie using this model was unnecessary.) Therefore, the heater current is

neglected in predicting ln(Ia/Ie).

The results of the multiple regression shown above indicate that E (Vac) and B are

strong predictors of ln(Ia/Ie), and it was shown (Section 6.3.4) that pressure strongly

influences ionization. Therefore, to refine the model, data were taken for a parameter

space of E (Vac), B, and pressure. For this parameter space, each parameter is

swept through 8 to 10 values for 9 combinations of the other two parameters (all

combinations for three values of each). Emission current and anode current were

recorded and the results are shown in Figs. C.1 through C.4 (Each of these figures

represents the same data plotted against a different parameter in order to show the

relation between ln(Ie/Ia) and the control parameters).
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Figure C.1: Results of the parameterization data where ln(Ie/Ia) is shown
as a function of magnetic field (B).

Figure C.2: Results of the parameterization data where ln(Ie/Ia) is shown
as a function of anode-to-cathode voltage, Vac.
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Figure C.3: Results of the parameterization data where ln(Ie/Ia) is shown
as a function of the natural log of pressure, ln(P ).

Figure C.4: Results of the parameterization data where ln(Ie/Ia) is shown
as a function of E ln(P ).
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Figure C.5: Residual plots showing normal scatter for the model presented
in Table C

Variable selection for the multiple regression analysis was accomplished by in-

spection of the scatter plots. From these plots it was apparent that the ionization

depends on all three factors of E (Vac), B and pressure. However, it was also ap-

parent that there were two-factor interactions, particularly between electric field and

pressure, where the linear dependence of ln(Ia/Ie) on pressure varies with different

values of E (Vac) and vice-versa. This indicates that a factor containing both E (Vac)

and P is present for a linear regression model. Figure C.4 shows the same data as

shown in Fig. C.3, except the x-axis is the parameter Vac× ln(P ) (the three magnetic

field conditions were combined in this plot, as the dependence was weak compared

to the dependence on E (Vac)). The linear (constant slope for all E (Vac) and B)

dependence of ln(Ia/Ie) on Vac × ln(P ) is shown. A multiple regression model for the

parameters of Vac, B, ln(P ) and Vac × ln(P ) was conducted and the results are shown

in Table C. The residuals of this model are shown in Fig. C.5.

These results give credence to the linear model to predict ln(Ia/Ie) and ultimately
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Table C.3: ANOVA table for ln(Ie/Ia) using ln(P ) × Vac, ln(P ), Vac, and
B as predictors.

Regression Equation
ln(Ie/Ia) = 2.26 + 0.00168Vac × ln(P ) + 0.260 ln(P ) + 0.0289Vac + 38.9B

Predictor Coef SE Coef T P

Constant 1.1567 0.6109 3.69 0.000
Vac x ln(P) 0.0016808 0.0003495 4.81 0.000
ln(P) 0.00025070 0.00001773 14.14 0.000
Vac 0.028899 0.004235 6.82 0.000
B 38.870 9.177 4.24 0.000
S = 0.373767 R2 = 84.7% R2(adj.) = 84.5%

Analysis of variance
Source DF SS MS F P
Regression 4 199.906 49.976 357.74 0.000
Residual Error 258 36.043 0.140(MSE)
Total 262 235.948

Ie (since Ia was measured for all conditions). As a general rule the null hypothesis

(the hypothesis that the predictor parameters could have come up with the same

results "by chance") may be rejected if the p-value, given in Table C, is less than a

significance level of α = 0.05. A significance level of 0.05 is commonly used, which

corresponds to a confidence interval of 95% that the hypothesis can be rejected if

the p-value is below α = 0.05, for various tests (F -test, T -test, etc.).† The T -test

p-values for the coefficients and the F -test p-value for the entire model are each less

than 0.0005. (Explanations of the T -test and F -test may be found in Ref. [148]. The

important aspect to note is that the p-values were significantly low for all tests which

indicates a good fit for the regression.) These, combined with inspection of the normal

probability plot showing normalized scatter in the data (Fig. C.5), indicate that the

regression equation presented in Table C provided a good fit to the experimental data

†These general guidelines may be found in [145, 148] and [149] among other statistical analysis
textbooks. Other significance levels may be used but the author would rather not break tradition.
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over the range of operating parameters explored and that the error was normally

distributed. Therefore, the estimation of ln(Ie/Ia) was predicted by the parameters

of Vac, B, Vac × ln(P ), and ln(P ) given by equation

Ŷ = 〈ln(Ie/Ia)〉 = 2.26+0.00168Vac×ln(P )+0.260 ln(P )+0.0289Vac+38.9B (C.1)

The error of this model propagates into the determination of the measured mo-

bility (Appendix D). Since it was desired to predict a value for Ia/Ie this prediction

must take on a range based on the error in the model (using a prediction interval).

The prediction interval is estimated by[148]







L

U







= Ŷ ∓ sŶ tn−2,1−α/2 (C.2)

where L and U are the lower and upper bound, respectively, Ŷ is the estimate of the

expected value of Y and sŶ is given by

s2
Ŷ

=

[

1 +
1

n
+

(X − X̄)2

∑

i(Xi − X̄)2

]

σ̂2 (C.3)

The range of Eq. (C.2) is determined through inspection of the mean squared error

(MSE) given in Table C and a 95% confidence interval is desired. The variance of the

sample, s2
Ŷ
, may be estimated by the mean square error of the linear model (because of

the large number of samples[148]) and the t-value (tn−2,1−α/2) for the 95% confidence

interval is given as 2.26 for n = 164 (where n is the number of degrees of freedom–

i.e. the number of data points used to predict Ŷ ). Thus, the interval is approximated

as ±0.846 for the prediction of ln(Ia/Ie).

Since the anode current was recorded for all mobility data obtained, the model

developed may be used to solve for the emission current as a function of anode current
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(in the cases where emission current was not recorded), where Ie is given by

Ie = Ia exp
[

−
(

Ŷ ± sŶ tn−2,1−α/2

)]

(C.4)

This estimation of emission current was used in cases where the emission current was

not obtained in mobility data.

This may be incorporated into the computation of mobility by replacing Eq. (7.4)

with

Jez(z) =
Ia
Aa

(

exp(−Ŷ ) +
(1 − exp(−Ŷ ))z

∆zf−a

)

(C.5)

so that experimental mobility is given by

µez =
Ja(CF )

Ezqne

(C.6)

where CF is given by

CF = exp(−Ŷ ) +
(1 − exp(−Ŷ ))z

∆zf−a

(C.7)

The variance of CF is then given by

σ2
CF =

(

∂(CF )

∂Ŷ

)2

σ2
Ŷ

(C.8)

and sŶ ≈ σ2
Ŷ
≈ MSE(from Table C). The variance introduced using this prediction

(σ2
CF ) was then incorporated within the error analysis (Appendix D) for the cases

where this estimation was used.

246



Appendix D

Error Analysis

The following sources of error occur and can be quantified in the determination of

the mobility and other parameters:

1. Anode current measurment

2. Curve fit for Te and ne

3. Estimation of emission current, Ie
∗

4. Pressure measurement

5. Ion density estimation

where each of these are described in more detail below.

Anode Current Measurement: For the anode current measurement 100 measure-

ments of anode current Ia were obtained (n = 100) when the probe was biased to

local potential (prior to I-V probe sweep). The average of these measurements is

used in the computation of the mobility and the standard deviation of the sample

was calculated. To find the standard deviation of the mean (often called the standard

∗where applicable, see Appendix C.
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error) the sample standard deviation was divided by
√
n and the variance (σ2/n) was

used in the propagation of error for the error in the experimental mobility described

below (Eq. (D.3)).

Curve Fit for Te & ne: The curve fit to find Te and ne uses the Levenberg–

Marquardt algorithm to fit a non-linear function (Eq. (6.5)) using the least squares

method. With this curve fit a residual was calculated as a measure of the deviation

of the data from the curve fit, where the residual was the weighted mean error and

given by:

1

N

N−1
∑

i=0

wi(fi − yi)
2 (D.1)

where N is the length of the array of dependent values, wi is the i-th element of the

array of weights for the observations, fi is the i-th element of the array of y-values

of the fitted model, and yi is the i-th element of the array of dependent values. In

the curve fit used for Te and ne the weights are set to 1, as the relative uncertainty

in the measured value (Ip) is not known as a function of any other parameter. The

curve fit also generates a covariance matrix, where the covariance, C, is given by the

following equation:

C =
1

2
D−1 (D.2)

where D is the Hessian[150] of the function with respect to its parameters. The

diagonal elements of the covariance matrix for the curve fit[148] give the variance of

the corresponding fit parameters, ne and Te.

Estimation of emission current, Ie: A variance is associated with the prediction

of the emission current where the variance, sŶ was given by Eq. C.3, This is the

variance for the predicted value Ŷ = 〈ln(Ie/Ia)〉. Since the Eq. (C.1) was used to

estimate Ie, the error associated with Ŷ propagates into the estimation of Ie. The

prediction of Ie is incorporated into the calculation for experimental mobility (Eq.

(C.6)) by a correction factor, CF , given by Eq. (C.7) with variance given by Eq.
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(C.8).

Pressure Measurement: The error due to the pressure measurement corresponds

to horizontal error bars when mobility is inspected as a function of pressure. Pressure

measurements were taken before and after each matrix of E and B (for all pressure

blocks) where E and B are randomized to prevent any temporal effects in pressure

from coupling to trends with electric and magnetic field. (Randomization is discussed

in more detail in Section 7.3) The two pressure measurements were averaged and the

error bar for pressure is found using Eq. (D.6) with a 95% confidence interval for

n = 2.

Ion Density Estimation: The ion density was determined according to the meth-

ods presented in Section 6.3.4. To assess the error in this estimate, error bars were

employed based on the minimum ion density, which was found by employing the max-

imum theoretically possible velocity of ions. The maximum velocity is the velocity

obtained from acceleration through the entire field from anode to cathode, evaluating

Eq. (6.7) at φ = Vac. The difference between the density found at maximum velocity

and the density found using Vac/2 was used as an estimate for the standard deviation.

A 95% confidence interval was applied according to Eq. (D.6).

When a combination of parameters (each with respective errors) was used, for

example in the calculation of mobility, the variance of each element was combined

through the propagation of errors which is given by the general equation

σ2
total =

p−1
∑

j=0

(

∂Y

∂βj

)2

σ2
βj

(D.3)

For example, within the calculation of mobility, the total variance of the mobility is

estimated by

σ2
total =

p−1
∑

j=0

(

∂µez

∂βj

)2

σ2
βj

=

(

∂µez

∂Ia

)2

σ2
Ia

+

(

∂µez

∂(CF )

)2

σ2
CF +

(

∂µez

∂ne

)2

σ2
ne

(D.4)
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For the calculation of mobility, taking the first partial derivatives, the variance is

given by

σ2
total =

(

CF

AaeneEz

)2

σ2
Ia

+

(

Ia
AaeneEz

)2

σ2
CF +

(−Ia(CF )

Aaen2
eEz

)2

σ2
ne

(D.5)

assuming statistical independence of the variables Ia, CF and ne. The justification

for the approximation of independence is that the three independent variables control

the three dependent variables where the total number of degrees of freedom in the

system is preserved. The 95% confidence interval is used so error bars are defined by







L

U







= Y ∓ tm,1−α/2σtotal (D.6)

where alpha is 0.05 and Y is the parameter of interest (such as mobility).

Propagation of error was used in any instance where combinations of measure-

ments were needed. As another example, in the determination of the ion fraction the

error in ion density and electron density were both taken into account. To assess the

error in the ion density fraction, Eq. (D.3) was used to account for the combination

of error due to both β1 = ni and β2 = ne.

Since the standard deviation of the sample (given by σtotal) is only an estimate of

the true scatter of the data, a better estimate of the standard deviation of any quantity

may be obtained by combining several individual measurements. This employs the

method of pooling where the more accurate estimate of the true standard deviation

is given by

σ =
(σ1n1 + σ2n2 + ... + σpnp)

(n1 + n2 + + np − p)
(D.7)

Since each measurement of the variance for mobility contains the same number of

degrees of freedom (n1 = n2) the standard deviation of the pooled samples of mobility
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is given by

σ =
(σ1 + σ2 + ...+ σp)

p
(D.8)

Averaging several measurements also allows for greater confidence due to the rep-

etition of measurements, where the standard deviation of the means is given by

σmean = σ/n. This method was employed whenever possible in reducing the un-

certainty in measurements. Error bars given in experimental results reflect this error

analysis.
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Appendix E

Adaptation of Neutral Probe

Diagnostics

The main source of error in the determination of mobility was the curve fit used to

determine Te and ne. Under certain conditions the error due to the measurement of

ne and Te overwhelms the magnitude of the respective measurements. The error in

measurement was particularly high under two types of conditions: 1.) low electric

field and 2.) high pressure. In the first case, the source of the error was an extremely

low probe current (< 0.5 nA) due to the low density within the confinement volume

approaching the limits of instrumentation where the noise in the circuitry overwhelms

the signal. In the second case the error was due to the presence of ion current,

where the single-component assumption (and neglect of ion current) which is key to

interpretation of the probe I-V characteristic no longer was valid. Figure E.1 shows a

trace exhibiting these conditions where ion current was obvious at sufficiently negative

probe voltages. This appendix suggests alternatives for achieving more reliable data

in the conditions where the single-component plasma assumption was not valid. This

analysis was not used in the processing of the data presented in Chapters 6 and 7,

as the model is still in preliminary stages, but a method is suggested as follows, that
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Figure E.1: Probe trace exhibiting ion current where non-neutral probe
theory is no longer valid

may be used to refine the probe theory for future experiments.

In the case of high pressure, the error in the curve fit was due to significant

ionization within the confinement volume where the neglect of ion current in the

single-component probe theory becomes invalid. This point is made obvious by ex-

amination of Fig. 6.15, which shows ion density fraction versus pressure. As the

pressure is increased, the ion density fraction approaches unity, but at the same time

the experimental error grows (as seen by the error bars) due to the error in ne. The

error bars become large when the ion fraction is ∼ 50%. The I-V characteristics under

these conditions were extremely repeatable where the curve fit resulted in highly re-

peatable values of electron temperature and electron density. However, the precision

should not be misinterpreted as accuracy, as the curve fit was equally inaccurate in

all cases, leading only to a high precision. Under the conditions of high ion density it

was apparent that single-component probe theory no longer was valid. An adaption

of neutral probe theory is presented below, which may be employed in future exper-

iments, in order to refine the measurements under the condition of high relative ion

density.
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Figure E.2: Square of probe current in ion collection region of I-V charac-
teristic given in Fig. E.1. The trendline was used to find ion density and also
used in the determination of electron current in the probe I-V characteristic
shown in Fig. E.3

and the slope of the plot was used to find ion density, where the ion density is given
by the equation

It is suggested that the adaptation of neutral probe theory be employed in the

case of ni/ne > 50% to achieve more reliable results. Figure E.1 shows a probe trace

for an electric field of 180 V, magnetic field of 0.0110 T and pressure of 7 × 10−5

Torr, where ion current is clearly seen. Applying neutral probe theory[122] to the

trace in Fig. E.1 the ion density was found using the ion collection region of the I-V

characteristic. Here the square of the ion current was plotted versus probe voltage

(Fig. E.2)

ni =
1.42 × 1015 (mi(amu))1/2 (−slope)1/2

Ap(m2)
(E.1)

The equation of the fit was given by

I2 = −3.2 × 10−21 (E.2)

and equation (E.2) resulted in an ion density of 1.2× 1011 m−3 for the case presented
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Figure E.3: Electron current from probe I-V characteristic determined using
Eq. (E.3).

in Fig. E.1.

The pure electron current (Fig. E.3) was found by subtracting the ion current

from the total probe current where the electron current was estimated by

Ie = Ip +
√

−3.2 × 10−21Vp − 4 × 10−19 (E.3)

This analysis deviates from standard neutral probe theory, as there was no electron

saturation due to the long Debye length. However, the electron saturation current is

generally used to infer plasma potential, which was already known from the vacuum

solution. Using the slope of the line in the plot of ln(Ie) versus Vp (Fig. E.4), electron

temperature was found to be Te = 38 eV and the electron density was found from Eq.

(E.4) given by

ne =
4Ie (Vp = φp)

eAp

√

8kTe

πme

(E.4)

This is the exact solution as was presented in Section 6.3.1, except a correction to the

probe current was made (previous step) to account for the ion current. The electron
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Figure E.4: The natural log of the electron current from Fig. E.3, where
the curve fit is used to estimate electron temperature.

density in this case was found to be ne = 5.4 × 109 m−3. (If the correction due

to ion current was not employed the electron density from this equation would be

ne = 3.7 × 109 m−3.)

These results are, at the very least, in a range that is plausible. It was suspected

that ion density was approximately equal to electron density where here they differ

by a factor of ∼ 20. However, these results may also have significant error due to

the ion flow, which comes as a result of ion acceleration due to the electric field. The

probe theory presented here may over or under estimate the ion density and also may

misrepresent the total ion contribution to the probe current, which affects the inter-

pretation of the curve for electron temperature and electron density. Furthermore,

the concept of ion saturation is also not entirely relevant under these conditions where

Debye shielding is absent.

This method may eventually lead to plausible results; however, certain consider-

ations are yet needed to account for the ion flow (as ions are accelerated axially by

the field). Furthermore accounting for the ion flow must be coupled with the position
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and orientation of the probe and must also account for the lack of ion saturation.

For example, when the probe is in certain locations/orientations the ion flow may

be accelerated by the field in the direction of the probe surface so ion density would

be overestimated; the converse may also be true where the ion current may be ac-

celerated away from the probe surface to the ion density is underestimated. These

two cases are highly likely to occur as the curved magnetic field acts as an ion lens[?

]. Even though the probe was oriented with the collection surface parallel to z, the

ions may have a radial component to their trajectories due to the "lens." The elec-

tron temperature and density found using this method are highly dependent on the

adjustment of the probe current for the ion contribution, where Eq. (E.1) may need

to be modified in the case of flowing ions. This method is not yet complete and is

also discussed in Section 8.2.1. To complete this analysis, an accurate model of the

ion current due to the above factors is necessary. For the purposes of the results pre-

sented in Chapters 6 and 7 it was determined that in cases where the ion density is

greater than 50% of the electron density the results are considered unreliable, where

the unreliable results are represented by large error bars. This condition appears to

consistently at pressures above 3×10−5 Torr. Using an adapted neutral probe theory

in these cases is a viable option when this method is fully developed to fully account

for the directed ion current.
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Appendix F

Permission to Use Material

The following letters grant the author permission to reproduce the cited copyrighted

images for use in this dissertation:
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Figure F.1: Letter granting the author permission to reproduce copyrighted
images for use in Fig. 4.4.
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Figure F.2: Letter granting the author permission to reproduce copyrighted
images for use in Fig. 4.9.

261



262



References

[1] Blender 3d design course, http://www.gryllus.net/blender/3d.html. Hirsig, N.

[2] Feynman, R. P. Perfectly Reasonable Deviations from the Beaten Track: The
Letters of Richard P. Feynman; Basic Books, 2005.

[3] The Siglo Database, http://www.siglo-kinema.com. CPAT and Kinema Soft-
ware. 1 June 2009.

[4] Courtesy of Michigan Technological University Office of Marketing and Com-
munication. Houghton, MI, May 2007.

[5] Hofer, R. R. Development and Characterization of High-Efficiency, High-
Specific Impulse Xenon Hall Thrusters PhD thesis, University of Michigan, Ann
Arbor, Mich., 2004.

[6] Courtesy of Magna-Tech PM Laboratories. Cinnaminson, NJ, April 2006.

[7] Haas, J. M. Low-perturbation interrogation of the internal and near-field plasma
structure of a Hall thruster using a high-speed probe positioning system PhD
thesis, University of Michigan, Ann Arbor, Michigan, 2001.

[8] Levchenko, I.; Keidar, M.; Ostrikov, K. Phys. Lett. A 2009, 373, 1140–1143.

[9] Bouchoule, A.; Boeuf, J.-P.; Heron, A.; Duchemin, O. Plasma Phys. Control.
Fusion 2004, 46, B407–B421.

[10] Kerslake, W. R.; Ignaczak, L. R. In 28th Joint Propulsion Conference and
Exhibit, pages AIAA–92–3516, Huntsville, AL, 6-8 July, 1992.

[11] Zhurin, V. V.; Kaufman, H. R.; Robinson, R. S. Plasma Sources Sci. Technol.
1999, 8, R1.

[12] Kim, V. J. Propul. Power 1998, 14(5), 736–743.

[13] Gulczinski, F. S. I.; Spores, R. A. In 32nd AIAA/ASME/SAE/ASEE Joint
Propulsion Conferene, pages AIAA–1996–2973, Lake Buena Vista, Fla., 1996.

263



[14] Space technology experiment satellite completes mission (http://www.nro.gov/
PressReleases/prs_rel31.html). NRO Press Release. 18 June 1999.

[15] Estublier, D.; Saccoccia, G.; Gonzalez del Amo, J. ESA Bulletin 15 Feb 2007,
pages 40–46.

[16] International Space Technologies, Inc. debuts its sta-
tionary plasma thrusters on Loral-built MBSat satellite
(http://ssloral.com/html/pressreleases/pr20040628.html). Space Systems
Loral Press Release. 28 June 2004.

[17] The first US Hall thruster is operational in space (http://www.space-
travel.com/ reports/ The_First_US_Hall_Thruster_Is_Operational_In
_space _999.html). Space Travel: Exploration and Tourism, Staff Writers. 6
March 2007.

[18] de Grys, K. H.; Welender, B.; Dimicco, J.; Wenzel, S.; Kay, B.; Khayms, V.;
Paisley, J. In 41st Joint Propulsion Conference & Exhibit, pages AIAA 2005–
3682, Tucson, Ariz., 10-13 July, 2005.

[19] Hofer, R. R.; Randolph, T. M.; Oh, D. Y.; Snyder, J. S.; de Grys, K. H. In 42nd
Joint Propulsion Conference & Exhibit, pages AIAA–2006–4469, Sacramento,
Calif., 9-12 July, 2006.

[20] Choueiri, E. Y. J. Propul. Power 2004, 20(2), 193–203.

[21] Janes, G. S.; Lowder, R. S. Phys. Fluids 1966, 9(6), 1115–1123.

[22] Pote, B.; Tedrake, R. In 27th International Electric Propulsion Conference,
pages IEPC–2001–35, Pasadena, Calif., 15-19 October, 2001.

[23] Kaganovich, I. D.; Raitses, Y.; Sydorenko, D.; Smolyakov, A. Phys. Plasmas
2007, 14, 057104.

[24] Koo, J. W.; Boyd, I. D. Phys. Plasmas 2006, 13, 033501.

[25] Choueiri, E. Y. Phys. Plasmas 2001, 8(4), 1411.

[26] Knoll, A.; Thomas, C. A.; Gascon, N.; Cappelli, M. A. In 42nd AIAA/AS-
ME/SAE/ASEE Joint Propulsion Conferene, Sacramento, California, 2006.

[27] Taccogna, F.; Schneider, R.; Longo, S.; Capitelli, M. In 43rd AIAA/AS-
ME/SAE/ASEE Joint Propulsion Conference & Exhibit, pages AIAA–2007–
5211, Cincinnati, Ohio, 8-11 July, 2007.

[28] Goebel, D. M.; Katz, I. In Fundamentals of Electric Propulsion: Ion and Hall
Thrusters; Yuen, J. H., Ed.; John Wiley & Sons, 2008.

264



[29] Komurasaki, K.; Arakawa, Y. J. Propul. Power 1995, 11(6), 1317–1323.

[30] Fife, J. M. Hybrid-PIC Modeling and Electrostatic Probe Survey of Hall
Thrusters PhD thesis, Massachusetts Institute of Technology, Cambridge,
Mass., 1998.

[31] Garrigues, L.; Boyd, I. D.; Boeuf, J. P. J. Propul. Power 2001, 17(4), 772–779.

[32] Hagelaar, G. J. M.; Bareilles, J.; Garrigues, L.; Boeuf, J. P. J. Appl. Phys.
2003, 93(1), 67–75.

[33] Fernandez, E.; Scharfe, M. K.; Thomas, C. A.; Gascon, N.; Cappelli, M. A.
Phys. Plasmas 2008, 15(1), 012102.

[34] Hofer, R. R.; Katz, I.; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Sullivan,
R. M.; Johnson, L. K. In 44th Joint Proupulsion Conference & Exhibit, pages
AIAA–2008–4924, Hartford, Conn., 21-23 July, 2008.

[35] O’Neil, T. M. Phys. Rev. Lett. 1985, 55(9), 943.

[36] Dubin, D. H. E.; O’Neil, T. M. Phys. Plasmas 1998, 5(5), 1305.

[37] Keidar, M.; Boyd, I. D. App. Phys. Lett. 19 Sept. 2005, 87(12), 121501.

[38] Chen, F. F. Introduction to Plasma Physics and Controlled Fusion, 2nd Edition;
Plenum Press, 1984.

[39] Spitzer, L. J. Astrophys. J. 1952, 116, 299.

[40] Northrop, T. G.; Teller, E. Phys. Rev. 1960, 117(1), 215.

[41] Goldston, R. J.; Rutherford, P. H. Introduction to Plasma Physics; Taylor &
Francis Group, LLC, 1995.

[42] Tanenbaum, B. S. Plasma Physics; McGraw-Hill, 1967.

[43] King, L. B. In International Electric Propulsion Conference, page 258, Prince-
ton, NJ, 31 Oct-4 Nov, 2005.

[44] Baldwin, D. E. Rev. Mod. Phys. 1977, 49(2), 317.

[45] Catto, P. J.; Bernstein, I. B. Phys. Fluids 1981, 24(10), 1900.

[46] Shokri, B.; Niknam, A. R. Phys. Plasmas 2005, 12, 072107.

[47] Kaganovich, I. D.; Raitses, Y.; Sydorenko, D. In 43rd AIAA/AS-
ME/SAE/ASEE Joint Propulsion Conference & Exhibit, pages AIAA–2007–
5206, Cincinnati, Ohio, 8-11 July, 2007.

265



[48] Gombosi, T. I. Gaskinetic Theory; Cambridge University Press, 1994.

[49] Villani, C. In Handbook of Mathematicaal Fluid Dynamics, Vol. 1; Friedlander,
S., Serre, D., Eds.; Elsevier Science: Amsterdam, Netherlands, Jul 2002.

[50] Bhatnagar, P. L.; Gross, E. P.; Krook, M. Phys. Rev. 1954, 94, 511–525.

[51] Rosenbluth, M. N.; MacDonald, W. M.; Judd, D. L. Phys. Rev. 1957, 107(1),
1–6.

[52] Chandrasekhar, S. Rev. Mod. Phys. Jan 1943, 15(1), 1–89.

[53] Callen, J. D. Fundamentals of Plasma Physics,
http://homepages.cae.wisc.edu/ callen/book.html, Draft Jan 21. 2003; 2003.

[54] Choueiri, E. Y. Phys. Plasmas 1999, 6(5), 2290.

[55] Thomas, C. A. Anomalous Electron Transport in the Hall-Effect Thruster PhD
thesis, Stanford University, 2006.

[56] Cook, I. In Plasma Physics and Nuclear Fusion Research; Gill, R. D., Ed.;
Academic Press Inc.: London, 1981; pages 293–304.

[57] Pines, D.; Bohm, D. Phys. Rev. 1952, 85(2), 338.

[58] Davidson, R. C. Physics of Nonneutral Plasmas; Imperial College Press and
World Scientific Publishing Co. Pte. Ltd., 2001.

[59] Berg, H. C. Random Walks in Biology; Princeton University Press, 1983.

[60] Einstein, A. Annalen der Physik 1905, 17, 549–560.

[61] Brown, S. C. Introduction to electrical discharges in gases; John Wiley & Sons,
Inc, 1966.

[62] Spitzer, L. J. Physics of fully ionized gases; Interscience Publishers (John Wiley
& Sons), 1962.

[63] Helander, P.; Sigmar, D. J. Collisional Transport in Magnetized Plasmas; Cam-
bridge University Press, 2002.

[64] Dubin, D. H. E.; O’Neil, T. M. Phys. Rev. Lett. 1988, 60(13), 1286.

[65] Bohm, D. In Characteristics of Electrical Discharges in Magnetic Fields; Chap-
ter 2; Guthrie, A., Wakerling, R. K., Eds.; McGraw-Hill: New York, 1949;
pages 13–76.

[66] Kadomtsev, B. B.; Pogutse, O. P. Nucl. Fusion 1971, 11, 67.

266



[67] Wagner, F.; et al. Phys. Rev. Lett. 1982, 49(19), 1408.

[68] Stacey, W. M. Fusion Plasma Physics; Wiley-VCH Verlag GmbH &Co KGaA,
2005.

[69] Lundin, D.; Helmersson, U.; Kirkpatrick, S.; Rohde, S.; Brenning, N. Plasma
Sources Sci. Technol. 2008, 17, 025007.

[70] Sheridan, T. E.; Goekner, M. J.; Goree, J. J. Vac. Sci. Technol. A 1990, 8(1),
30.

[71] Meezan, N. B.; Hargus, W. A.; Cappelli, M. A. Phys. Rev. E 2001, 63, 026410.

[72] Bohm, D.; Gross, E. P. Phys. Rev. 1949, 75(12), 1851–1864.

[73] Bohm, D.; Gross, E. P. Phys. Rev. 1949, 75(12), 1864–1876.

[74] Looney, D. H.; Brown, S. C. Phys. Rev. 1954, 93(5), 965.

[75] Sturrock, P. A. Phys. Rev. 1960, 117(6), 1426–1429.

[76] Bohm, D. In The Characteristics of Electrical Discharges in Magnetic Fields;
Chapter 1; Guthrie, A., Wakerling, R. K., Eds.; McGraw-Hill: New York, 1949;
pages 1–12.

[77] Cohen, A. J. NASA Technical Note 1968, NASA TN D-4758.

[78] Yoshikawa, S.; Rose, D. J. Phys. Fluids 1962, 5(3), 334–340.

[79] Morozov, A. I. In 39rd International Electric Proupulsion Conference, pages
IEPC–93–101, Seattle, Washington, 1993.

[80] Morozov, A. I. In 39rd International Electric Proupulsion Conference, pages
IEPC–95–05, Moscow, Russia, 1995.

[81] Lashinsky, H. Phys. Rev. Lett. 1964, 12(5), 121–123.

[82] Gorshkov, O. A.; Shagaida, A. A. High Temperature Apparatuses and Structures
2008, 46(4), 529–534.

[83] Spektor, R. In 30th International Electric Propulsion Conference, pages IEPC–
2007–70, Florence, Italy, 17-20 Septemver, 2007.

[84] Keidar, M.; Brieda, L. In 44th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference & Exhibit, pages AIAA–2008–5186, Hartford, CT, 21-23 July, 2008.

[85] Black, D. C.; Mayo, R. M.; Caress, R. W. Phys. Plasmas 1997, 4(10), 3581.

267



[86] Raitses, Y.; Staack, D.; Keidar, M.; Fisch, N. J. Phys. Plasmas 2005, 12,
057104.

[87] Meezan, N. B.; Cappelli, M. A. Phys. Rev. E 2002, 66, 036401.

[88] Lazurenko, A.; Albarede, L.; Bouchoule, A. Phys. Plasmas 2006, 13(8), 083503.

[89] Lazurenko, A.; Dudok De Wit, T.; Cavoit, C.; Krasnoselskikh, V.; Bouchoule,
A.; Dudeck, M. Phys. Plasmas 2007, 14, 033504.

[90] Krall, N. A.; Rosenbluth, M. N. Phys. Fluids 1963, 6(2), 254–265.

[91] Davidson, R. C.; Krall, N. A. Phys. Fluids 1970, 13(6), 1543.

[92] Rosenberg, M.; Krall, N. A.; McBride, J. B. Phys. Fluids 1985, 28(2), 538–543.

[93] Kennel, C. F.; Engelmann, F. Phys. Fluids 1966, 9(12), 2377.

[94] Hall, D. E.; Sturrock, P. A. Phys. Fluids 1967, 10(12), 2620.

[95] Lerche, I. Phys. Fluids 1968, 11(8), 1720.

[96] Davidson, R. C. Methods in Nonlinear Plasma Theory; Academic Press, 1972.

[97] Stringer, T. E. In Plasma Physics and Nuclear Fusion Research; Gill, R. D.,
Ed.; Academic Press Inc.: London, 1981; pages 305–318.

[98] Bernstein, I. B.; Engelmann, F. Phys. Fluids 1966, 9(5), 937.

[99] Cook, I. In Plasma Physics; Keen, B. E., Ed.; Institute of Physics: London,
1974.

[100] Scharfe, M. K.; Thomas, C. A.; Scharfe, D. B.; Gascon, N.; Cappelli, M. A.;
Fernandez, E. In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference
& Exhibit, pages AIAA–2007–5208, Cincinnati, Ohio, 8-11 July, 2007.

[101] Lomas, P. J. J. Phys. D: Appl. Phys. 1976, 9, 1705–1713.

[102] Bradley, J. W. Plasma Sources Sci. Technol. 1998, 7, 572–580.

[103] Kolev, I.; Bogaerts, A. Contributions to Plasma Physics 2004, 44(7-8), 582–588.

[104] Davidson, R. C.; Chao, E. H. Phys. Plasmas 1996, 3(7), 2615.

[105] deGrassie, J. S.; Malmberg, J. H. Phys. Rev. Lett. 1977, 39(17), 1077–1080.

[106] deGrassie, J. S.; Malmberg, J. H. Phys. Fluids 1980, 23(63).

[107] Chao, E. H.; Davidson, R. C.; Paul, S. F.; Morrison, K. A. Phys. Plasmas 2000,
7(3), 831–838.

268



[108] Eggleston, D. L.; O’Neil, T. M.; Malmberg, J. H. Phys. Rev. Lett. 1984, 53(10),
982.

[109] Espejo, J.; Quraishi, J.; Robertson, S. Phys. Rev. Lett. 2000, 84(24), 5520–
5523.

[110] Robertson, S.; Espejo, J.; Kline, J.; Quraishi, Q.; Triplett, M.; Walch, B. Phys.
Plasmas 2001, 8(5), 1863–1869.

[111] Dubin, D. H. E. Phys. Plasmas 1998, 5(5), 1688–1694.

[112] Eggleston, D. L. Phys. Plasmas 1997, 4(5), 1196.

[113] Cappelli, M. A.; Hargus, W. A.; Meezan, N. B. IEEE Trans. Plasma Sci. 1999,
27(1), 96–97.

[114] Eggleston, D. L.; O’Neil, T. M. Phys. Plasmas 1999, 6(7), 2699.

[115] Linnell, J. A.; Gallimore, A. D. Phys. Plasmas 2006, 13, 093502.

[116] Fossum, E. C.; King, L. B. IEEE Trans. Plasma Sci. 2008, 36(1), 2088.

[117] Fossum, E. C.; King, L. B. In 44th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference & Exhibit, page 5190, Hartford, Conn.2008, 2009.

[118] Fossum, E. C.; King, L. B. In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion
Conferene, page 5207, Cincinnati, Ohio, 2007.

[119] Fossum, E. C.; King, L. B. In 30th International Electric Propulsion Conference,
page 153, Florence, Italy, 2007.

[120] Fossum, E. C.; King, L. B.; Makela, J. M. In 42nd AIAA/ASME/SAE/ASEE
Joint Propulsion Conference & Exhibit, page 5173, Sacramento, Calif, 2006.

[121] http://www.ansoft.com/maxwellsv/.

[122] Hutchinson, I. H. Principles of Plasma Diagnostics, 2nd Edition; Cambridge
University Press, 2002.

[123] Hutson, A. R. Phys. Rev. 1955, 98(4), 889.

[124] Robertson, S.; Walch, B. Phys. Plasmas 2000, 7(6), 2340–2347.

[125] Quraishi, Q.; Robertson, S.; Walch, B. Phys. Plasmas 2002, 9(8), 3264.

[126] Nunes, Y.; Wemans, A.; Gordo, P. R.; Ribau Tiexiera, M.; Maneira, M. J. P.
Vacuum 2007, 81(11-12), 1511–1514.

[127] Oks, E. M.; Vizir, A. V.; Yushkov, G. Y. Rev. Sci. Instr. 1998, 69(2), 853–855.

269



[128] Morrison, K. A.; Davidson, R. C.; Paul, S. F.; Belli, E. A.; Chao, E. H. Phys.
Plasmas 2001, 8(7), 3506.

[129] Haas, J. M.; Galimore, A. D. IEEE Transactions on Plasma Science 2002,
30(2).

[130] McHarg, B. B.; Oakes, M. E. Phys. Fluids 1975, 18(8), 1059.

[131] Catto, P. J.; Xing, Z. L. Phys. Fluids 1985, 28(1), 352.

[132] Callen, J. D. In Fundamentals of Plasma Physics, Online Book; 2006.

[133] Perez-Luna, J.; Dubuit, N.; Garrigues, L.; Hagelaar, J. M.; Boeuf, J.-P. IEEE
Transactions on Plasma Science 2008, 36(4), 1212.

[134] Kretzschmar, M. Physica Scripta. 1992, 46, 544–554.

[135] Bradley, J. W.; Thompson, S.; Gonzalvo, Y. A. Plasma Sources Sci. Technol.
2001, 10, 490–501.

[136] Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes,
G. G.; Quataert, E.; Tatsuno, T. The Astrophysical Journal Supplement Series
2008, 2, 0704.0044.

[137] Barral, S. In 30th International Electric Propulsion Conference, page 261, Flo-
rence, Italy, 17-20 September, 2007.

[138] Kremer, J. P.; Sunn Pedersen, T.; Marksteiner, Q.; Lefrancois, R. G.; Hahn,
M. Rev. Sci. Instr. 2007, 78, 013503.

[139] Himura, H.; Nakashima, C.; Saito, H.; Yoshida, Z. Phys. Plasmas 2001, 8(10),
4651–4658.

[140] Budtz, C. V.; Bottiger, J.; Kringhoj, P. Vacuum 2000, 56(1), 9–13.

[141] Frignani, M.; Grasso, G. Technical Report; Nuclear Engineering Laboratory
Montecuccolino; University of Bologna 2006, pages LIN–R01.2006.

[142] Pekker, L. Plasma Sources Sci. Technol. 1995, 4, 31–35.

[143] Christou, C.; Barber, Z. H. Plasma Sources Sci. Technol. 2002, 11, 37–46.

[144] Barber, Z. H.; Christou, C.; Chiu, K. F.; Garg, A. Vacuum 2002, 69(1-3),
53–62.

[145] Montgomery, D. C. Design and Analysis of Experiments; John Wiley & Sons,
Inc., 2005.

270



[146] Grissom, J. T.; Compton, R. N.; Garrett, W. R. Phys. Rev. A 1972, 6(3), 977.

[147] Kriesel, J. M.; Driscoll, C. F. Phys. Rev. Lett. 2000, 85(12), 2510.

[148] Bethea, R. M.; Duran, B. S.; Boullion, T. L. Statistical Methods for Engineers
and Scientists; Marcel Dekker, Inc., 1995.

[149] Hocking, R. R. Biometrics 1976, 32, 1–49.

[150] Schabenberger, O.; Gotway, C. A. Statistical methods for spatial data analysis;
Chapman & Hall/CRC Press, 2005.

271



272


	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Hall Thruster Overview
	Electron Mobility in Hall Thrusters
	Problem Statement, Aim, and Scope
	Contribution of this Research (Overview)
	Organization

	Charged Particle Transport
	Fundamental Plasma Concepts
	Single Particle Motion
	Collective Description
	Plasma Oscillations
	Non-neutral Plasmas

	Classical Diffusion and Mobility
	Free Diffusion and Mobility
	Magnetized Diffusion and Mobility
	Classical Collision Species

	Fluctuation-induced Transport
	Summary

	Hall Thrusters & Related Research
	Introduction
	Physics of Hall Thrusters
	Mobility Research in Hall Thrusters
	Classical Electron Mobility
	Wall Effects
	Fluctuation-Induced Mobility

	Other Plasma Transport Studies
	Critical Review & Contributions

	Design & Fabrication of Device
	Purpose & Overview of Design
	Magnetic Field
	Electric Field
	Radial Confinement
	Electron Loading
	Design Comments

	Analytical Characterization
	Introduction
	Plasma Parameters
	Debye Length
	Plasma Self-fields
	Collisions

	Electron Dynamics
	Radial Confinement Characteristics
	Radial Confinement Time
	Characteristic Single Particle Motion

	Comparison to Hall Thruster Electron Dynamics

	Experimental Methods & Characterization
	Experimental Setup (Overview)
	Control Parameters
	Magnetic Field
	Pressure
	Electric Field

	Device Operation and Plasma Properties
	Probe Diagnostics
	Electron Density
	Electron Temperature
	Ion Density
	Collisions with Poles

	Summary

	Mobility
	Mobility Measurement Strategy
	Classical and Bohm Mobility
	Testing Methods
	Mobility vs. Control Parameters
	ez vs. Magnetic Field
	ez vs. Pressure
	ez vs. Electric Field

	Other Mobility Investigations
	ez vs. Electron Density
	"Wall" Collisions
	Probe Configuration
	Electric Field Oscillations

	Supporting Evidence of Non-classical Mobility
	Electron Temperature Analysis
	Path Length Analysis

	Summary

	Conclusions & Future Work
	Contributions of This Work
	Future Work
	Refinement of Diagnostic Techniques
	Path Length Analysis
	Low pressure operation
	Investigation of "Bounce" Mobility


	Machine Drawings of Mobility Gage
	Magnetic Field Tuning
	Emission Current Estimation
	Error Analysis
	Adaptation of Neutral Probe Diagnostics
	Permission to Use Material
	Bibliography

