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1. Introduction 

 

1.1. Formation Flying Background 

Swarms of microsatellites are currently envisioned as an attractive alternative to 

traditional large spacecraft.  Such swarms, acting collectively as virtual satellites, will 

benefit from the use of cluster orbits where the satellites fly in a close formation.1  The 

formation concept, first explored in the 1980’s to allow multiple geostationary satellites 

to share a common orbital slot,2,3 has recently entered the era of application with many 

missions slated for flight in the near future.  For example, EO-1 will formation fly with 

LandSat-7 to perform paired earth imagery, ST-3 will use precision formation flight to 

perform stellar optical interferometry, TechSat 21 will be launched in 2004 to perform 

sparse-aperture sensing with inter-vehicle spacing as close as 5 m, and the ION-F science 

mission will perform distributed ionospheric impedance measurements.4,5  The promised 

payoff of formation-flying has recently inspired a large amount of research in an attempt 

to overcome the rich technical problems.  A variety of papers can be found in the 

proceedings of the 1999 AAS/AIAA Space Flight Mechanics Meeting,6,7,8 the 1998 Joint 

Air Force/MIT Workshop on Satellite Formation Flying and Micro-Propulsion,9 a recent 

textbook on micropropulsion,10 and numerous other sources.11,12,13,14,15,16,17 

Relative positional control of multiple spacecraft is an enabling technology for 

missions seeking to exploit satellite formations.  Of the many technologies that must be 

brought to maturity in order to realize routine formation flying, perhaps the most crucial 

is the spacecraft propulsion system.  In fact, during his keynote address at the 1998 Joint 
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Air Force/MIT Workshop on Satellite Formation Flying and Micro-Propulsion, Dr. David 

Miller of the Space Systems Laboratory at MIT delivered a “Top Ten List” of formation-

flying technological obstacles.  On this list, the two most important technologies were 

identified as (1) Micropropulsion; and (2) Payload contamination, arising from propellant 

exhausted from closely spaced satellites.9 

Constellations of small satellites will require propulsion systems with micro- to 

milli-Newton thrust levels for deployment, orbit maintenance, disposal, and attitude 

control.18,19  Formation-keeping thrusters must be capable of producing finely controlled, 

highly repeatable impulse bits.  Although no suitable thruster has yet been proven in 

flight, recent research suggests that the best current technologies are micro-pulsed-plasma 

thrusters (micro PPT),5 field-emission electric propulsion thrusters (FEEP),20 and colloid 

thrusters.21   

As identified in item (2) from Dr. Miller’s technology list, current research-level 

thruster candidates pose significant contamination problems.  In close proximity, the 

propellant emitted by such devices as micro-PPT’s (vaporized Teflon), FEEP (ionized 

cesium), or colloid thrusters (liquid glycerol droplets doped with NaI) will impinge upon 

neighboring vehicles and damage payloads.  To worsen the problem, orbital mechanics 

for many clusters of interest mandate continuous thruster firings pointed directly towards 

other vehicles in the formation.  The contamination problem will be amplified as the 

formation spacing is reduced. 
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1.2. Coulomb Control Concept 

1.2.1. Existing Technology 

Of the many technologies that must be brought to maturity in order to validate the 

satellite formation-flying concept, perhaps the most crucial is the propulsion system.  

Fine positioning and formation-keeping of low-mass vehicles in a swarm will require 

development of very low-thrust propulsion systems with finely controllable impulse bits.  

Even with the high-specific-impulse available from conventional electric propulsion (EP) 

thrusters, maintaining a formation by forcing individual satellites to occupy non-

Keplerian orbit paths will require continuous thrusting over the lifetime of the mission.  

Over a five- to ten-year mission, such continuous thrust requirements will place heavy 

demands on thruster reliability and operational lifetime. 

For widely spaced formations (inter-spacecraft separation on the order of 100 m 

or more) the fine-positioning requirements may be met with conventional EP thrusters.  

However, for very closely spaced swarms, current propulsive systems are not well suited 

to perform precision formation flying.  For space interferometry, configurations are 

envisioned where the inter-satellite spacing is less than ten meters.  In such a tight swarm, 

precision formation keeping will be extremely difficult.  Existing thruster technologies 

that have been identified as the most promising tools for accomplishing such tight-

formation flying include micro pulsed-plasma thrusters (micro PPT’s), field-emission 

electric propulsion (FEEP) thrusters, and colloid thrusters.22  Although all of these 

thrusters are technologically immature, each device is capable, in principle, of generating 

controllable micro-Newton levels of thrust. 
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Propellant-emitting thrusters will pose a spacecraft integration/contamination 

problem for tight satellite formations.  Each of the thruster technologies currently under 

development will exhaust damaging propellant.  For many spacecraft operating in close 

proximity, the microthruster propellant (vaporized Teflon for PPT’s, liquid cesium for 

FEEP, and NaI-doped liquid glycerine for colloid) has a high likelihood of contaminating 

sensitive spacecraft surfaces, optics, and other instruments on neighboring craft.  Such 

contamination would be incompatible with high-resolution imaging systems.  In addition 

to material contamination problems, the potential exists for exhaust plume impingement 

forces to be transmitted from one spacecraft in the constellation to another, greatly 

complicating the fine position control. 

 

1.2.2. Overview of Coulomb Concept 

The concept proposed in this document uses the principle of Coulomb 

attraction/repulsion between charged bodies to control the spacing between nodes of a 

microsatellite cluster.  The Coulomb control principle is most easily conveyed by 

examining the interaction between two neighboring bodies capable of transferring electric 

charge.  Much more detailed analysis of the physical processes will be presented in later 

chapters. 

Consider, for instance, two vehicles separated a distance d in space as shown in 

Figure 1-1. 
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Figure 1-1.  Fundamental Coulomb Control Concept using two charge spherical bodies. 

 
Initially, both spacecraft are electrically neutral, i.e., the amount of negative 

charge (electrons) is equal to the amount of positive charge producing a net vehicle 

charge of zero and no interaction between the craft.  Now, allow one craft to change its 

charge state through the emission of electrons.  This is a trivial process utilizing an 

electron-gun or similar cathode device.  If the electron beam is used to transfer an amount 

of negative charge, qSC, from spacecraft 1 (SC1) to spacecraft 2 (SC2), the net negative 

charge of SC2 will equal the net positive charge remaining on SC1, producing an 

attractive force between the spacecraft given by 

Eqn. 1-1 
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The charge required to produce a 10 µN attractive force at a spacecraft separation of d = 

10 m is qSC = 3.3x10-7 C.  Thus, using a 1-mA electron beam current, this charge can be 

transferred in only 330  µsec. 

For discussion purposes, consider 1-m spherical spacecraft (radius of 0.5 m).  The 

potential of the charged-spacecraft surface can be evaluated from Gauss’ law as: 
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where VSC is the spacecraft potential in volts and rSC is the spacecraft radius.  For a 
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positive potential of 6 kV, while VSC2 = -6 kV.  Thus, a 12-kV electron beam must be 

used in order to allow the charge from SC1 to “climb the hill” and reach the surface of 

SC2.  The minimum power required to generate a 10 µN attractive force in 330 µsec 

between the spacecraft separated a distance d = 10 m is then only 12 Watts.  This power 

can be reduced if longer charging time is acceptable. 

It is perhaps more intuitive to discuss inter-spacecraft Coulomb forces in terms of 

the spacecraft potential in volts, VSC.  By combining the above equations, the Coulomb 

force between two spacecraft can be written as 

Eqn. 1-3 
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Spacecraft charging has historically been associated with negative impacts on 

satellite payloads.  Arcs and other breakdown phenomena arising from such differential 

charging can wreak havoc on sensitive electronics.  Differential charging results when 

some regions of a spacecraft assume electric potentials drastically different from other 

regions of the same vehicle.  The induced intra-vehicle electric fields can cause 

spontaneous interruption of payload functions.  In this proposal, absolute spacecraft 

charging is proposed as a formation controlling method.  If adjusted uniformly over a 

vehicle, the spacecraft absolute potential with-respect-to space, VSC, can be driven to 

large values (such as many kilo-volts) with no impact to spacecraft functions and no risk 

of arc or spontaneous failure. 
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1.2.3. Supporting Flight Heritage 

A wealth of pertinent data and experience is available from the results of the 

SCATHA flight experiment.  The SCATHA satellite was launched in January, 1979 with 

the goal of measuring the build-up and breakdown of charge on various spacecraft 

components and to characterize the natural environment at GEO altitudes.23 

The satellite potential with respect to space plasma potential was monitored on the 

SCATHA craft.  During passive operation of the satellite, the spacecraft potential was 

seen to vary from near ground to many kilovolts negative.  This is a common occurrence.  

An isolated passive body immersed in plasma will accrue a net negative charge due to the 

higher mobility of electrons as compared to heavy ions.  For hot plasma such as that 

found at MEO-GEO, this negative charge is substantial.  One goal of the SCATHA 

mission was to test the validity of actively controlling the spacecraft potential by emitting 

charge through an electron beam.  To this end, an electron gun was used to transfer 

charge from SCATHA to the space plasma at various current and voltage levels up to 13 

mA and 3 kV.   

Due to the plasma environment, spacecraft routinely charge to negative voltages.  

However, a very important result, as reported by Gussenhoven, et al., was that, “the 

electron beam can achieve large, steady-state changes in the vehicle potential and the 

returning ambient plasma.”24   In fact, Gussenhoven found that when a 3 kV electron 

beam was operated, “the satellite became positively charged to…a value approaching 

beam energy for 0.10 mA” emission current.  Similarly, Cohen, et al. report that 

“spacecraft frame and surfaces on the spacecraft went positive with respect to points 50 

meters from the satellite when the gun was operated.  Depending upon ejected electron 
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currents and energies, spacecraft frame-to-ambient-plasma potential differences between 

several volts and 3 kV were generated.”25 

For rough estimation, we can approximate the SCATHA spacecraft as a sphere 

with a diameter of 1.7 m.26  If an identical SCATHA spacecraft had been in orbit 

simultaneously, the satellite potential control demonstrated on this 1979 mission would 

have been sufficient to actively generate attractive and repulsive forces between the 

vehicles with magnitudes up to almost 10 µN over 10 meters, at a power expense of only 

3 Watts.  In addition to the SCATHA data, during a separate flight-experiment the ATS-6 

spacecraft demonstrated charging as high as 19 kV.27,28.  Assuming a spacecraft diameter 

on the order of 1 meter, findings hint at the possibility to generate and control forces of 

hundreds of µN. 

 

1.3. Separated Spacecraft Interferometry 

1.3.1. Space-based Imaging Problem 

It has long been known that increased astronomical imaging capability could be 

realized if the optics for the imaging system were placed outside of the earth’s 

atmosphere.  Missions such as the current Hubble Space Telescope (HST) and planned 

Next Generation Space Telescope (NGST) exemplify this principle.  The increased 

clarity offered by space-based astronomy is somewhat offset, however, by practical limits 

placed on angular resolution of the image.  The angular resolution (resolving power) of 

an optic is related to the physical size of the collector by 
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Eqn. 1-4 
d2

λθ = , 

where θ is the minimum resolvable angular feature, λ is the wavelength to be imaged, 

and d is the physical size of the collecting aperture.  Thus, to obtain fine angular 

resolution (small θ) requires a large aperture.  Herein lies the problem for space-based 

imaging systems:  the physical size of the aperture is limited by launch vehicle fairing 

dimensions.  The largest launch fairing currently available is that of the Ariane V, which 

is approximately 5 meters in diameter.  For space-based imaging in the optical 

wavelengths (400-700 nm) using a monolithic aperture, missions are limited to angular 

resolution no better than 4x10-8 radians (about 8 milli-arcseconds). 

The ability to resolve an astronomical object is directly proportional to the size of 

the object and inversely proportional to the distance from the observer.  At the 

Spaceborne Interferometry Conference, Ridgeway presented a graphical depiction of the 

apparent size of “interesting” astronomical objects.29  Ridgeway’s schematic is 

reproduced in Figure 1-2.  In this figure, lines of constant apparent angular size 

(resolution) are shown.  It is significant that most of the science topics begin with angular 

scales of about 1 milli-arcsecond, approximately a factor of 1000 smaller than the typical 

limit of optical imaging from the ground. 
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Figure 1-2.  Depiction of apparent size of astronomical target objects.  The distance to the objects 

is listed on the vertical axis, with the transverse dimension of the object on the horizontal axis.  

Diagonal lines denote the angular extent of the target and, thus, the resolution required for 

imaging.  The 0.1 arc-sec line denotes Hubble Space Telescope (HST) capabilities.  It is 

significant that most science topics begin with resolutions better than 1 milli-arcsecond. 

 

1.3.2. Interferometry Fundamentals 

There are two options for circumventing the aperture resolution restrictions 

created by launch vehicles.  First, a deployable structure can be designed that can fold to 

stow into the size-limited fairing.  The structure can then be deployed on-orbit to a final 

size greater than the fairing diameter.  Although deployable structures avoid a direct 

physical size limitation, the stowed structure must still fit within the available launch 
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volume and is thus constrained at some larger, but finite, dimension related to the launch 

vehicle size.  The second method for overcoming vehicle size restrictions is separated 

spacecraft interferometry. 

Separated spacecraft interferometry is a direct extension of an imaging technique 

that has been employed with ground-based systems for years.  In ground-based 

interferometry, physically separated apertures collect incident radiation from the target at 

two or more discrete locations and direct this collected radiation to a common combiner 

station.  Using principles of Fourier optics, the radiation can be interfered to produce 

image data.  The power of interferometry arises from the increased angular resolution:  

the resolving power of the combined optical system is a function of the separation, or 

baseline, between individual collectors and not on the collector sizes themselves.  

Quantitatively, the resolving power is still given by Eqn. 1-4, however d is now the 

distance between the collectors, rather than the size of a given optic.  In principle, the 

baseline, d, and thus the resolving power can be increased without limit.  Detailed 

accounts of interferometry theory can be found in many textbooks30 and descriptions of 

space-based interferometry can be found in previous research works.14,15,16  A basic 

summary will be presented here.   

Qualitatively, the information in an image can be represented in two different 

formats.  The first mode, which is most intuitively familiar, is that of a spatial intensity 

map.  For every location (x, y coordinate) in a spatial plane some value of radiant 

intensity is given.  Mapping the intensity values produces an image in the same fashion 

that the human eye/retina records optical information.  The same information contained 

in the intensity map can be presented in a second format relating to spatial frequencies. 
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The spatial frequency representation of an image can most easily be understood in 

the context of a checker-board tile floor.  A spatial intensity map summarizes the floor 

image by assigning an amplitude to every x, y point on the floor corresponding to, say, 

the brightness of the floor.  One can also recognize obvious patterns in the floor that 

repeat themselves on a regular spatial period.  If the tiles in the floor are square, then the 

repeating pattern in the x direction has the same period, or spatial frequency, as the 

pattern in the y direction;  if they are rectangular the x and y patterns will have different 

frequencies.  Specification of the spatial frequencies then yields some of the image 

information.  For each spatial frequency in the floor, one must also specify an amplitude 

to fully describe all of the image information.  For the square-wave pattern of the 

checker-board floor, a large amplitude may correspond to black and white tiles, while a 

smaller amplitude may represent gray and white tiles. 

Fourier mathematics extends the simple qualitative tile floor analogy to images of 

arbitrary complexity.  Any function of intensity in the physical plane (x, y space) can be 

represented by an infinite series of Fourier terms.  Each term of the Fourier series has a 

spatial frequency (u, v point for x and y spatial frequencies respectively) and an 

amplitude coefficient.  Thus, if one knows the amplitude coefficient for every spatial 

frequency (u, v point), the Fourier representation of the image information can be 

transformed to produce the more familiar spatial intensity map of the target. 

In interferometry, the u-v points in the Fourier plane are obtained by separated 

collector points in the x-y physical plane.  When light of wavelength λ collected by two 

spacecraft at locations (x1, y1) and (x2, y2) is combined (interfered), the resulting 
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interference pattern yields a single value.  The single value is the complex amplitude of 

the Fourier term with spatial frequencies (u, v) denoted by 

Eqn. 1-5 
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Thus, each unique spacecraft separation vector, or baseline, yields one term of the Fourier 

representation of the image.  To reconstruct the image one must have information from 

many (theoretically an infinite number) of unique spacecraft baselines.  For multiple 

spacecraft, the u-v coverage is represented by the correlation function of the physical 

coverage.  For N spacecraft, each of the spacecraft has N-1 different position vectors to 

other vehicles in the array.  Thus the total number of u-v points from an array of N 

spacecraft is N(N-1) plus a zero baseline point. 

Judicious use of spacecraft collector assets mandates intelligent placement of the 

vehicles in physical space.  For instance, redundant baselines (separation vectors) 

between vehicles in a formation produce redundant Fourier information and represent a 

“waste” of assets.  Ideally, each of the N(N-1) u-v points should be unique.  Numerous 

collector formation possibilities exist based upon optimization of various parameters. 

Golay performed a study of collector placement based upon optimization of the u-v 

compactness of the overall formation.31  The resulting Golay formations are shown in 

Figure 1-3 for N=3, 6, 9, and 12 spacecraft.  Similarly, Cornwell derived formations 

which were designed to optimize the uniformity of coverage in the u-v plane.32  

Representative configurations for N=3-12 spacecraft Cornwell configurations are shown 

in Figure 1-4. 
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Figure 1-3.  Golay interferometric formations based upon optimizing the compactness of the 

group in u-v space.  The aperture locations in x-y space and the corresponding baselines in u-v 

space are plotted in adjacent diagrams.  (Figure reproduced from Ref. 15) 
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Figure 1-4.  Cornwell optimized arrays for uniform u-v coverage for N=3-12.  The positions of the 

apertures (spacecraft) are shown in x-y space, while the unique baselines (separations) show up 

as points in u-v space.  Positions and corresponding separations are plotted in adjacent 

diagrams.
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1.3.3. Practical Aspects of Space Interferometry 

The method by which the u-v points are mapped out depends upon the nature of 

the target object.  For static targets whose features are relatively constant (such as 

astronomical objects), the u-v points can be mapped out sequentially with as few as two 

collector spacecraft.  The vehicles simply move to the specified x-y positions, record a 

data point, and move on to other locations.  The image is then processed after a 

predefined number of u-v points have been recorded.  Such is the method employed by 

missions such as Deep Space 3 and Terrestrial Planet Finder.  For rapidly changing 

targets, such as those on the surface of the Earth, the image features must be recorded in a 

“snapshot” mode where all of the u-v points are obtained simultaneously.  Such 

configurations are said to produce full, instantaneous u-v coverage.  For such snapshots 

the number of independent collector spacecraft must be equal to the number of u-v points 

required to produce the image. 

Inteferometric imaging in the optical regime poses a constraint on an imaging 

array.  For lower frequencies, such as those in the radio spectrum for radar imaging, the 

incoming wavefront from each collector can be recorded and archived, with the actual 

interferometry between separate collectors performed later through post-processing.  

Optical signals, however, have frequencies too high to permit recording of the wavefront 

for post-processing.  Instead, the incoming signals from two collectors must be interfered 

in real time at the combiner.  In order to permit interference between the same wavefront 

from each collector, the light path length from each collector to the combiner must be 

equal to within a fraction of the radiation wavelength.  It is clear from an examination of 
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Figure 1-3 and Figure 1-4 that Cornwell arrays, with all of the collector apertures lying 

on the circumference of a circle, are ideally suited to a central combiner for optical path 

symmetry, while Golay arrays are not amenable to a single combiner vehicle. 

For formation-flying spacecraft performing visible imagery, the requirement of 

equal optical path lengths seems to present an unobtainable formation tolerance between 

spacecraft of a few nanometers.  In practice, however, this constraint is relaxed through 

the use of on-board delay lines for fine control.  In such a delay-line configuration, the 

individual spacecraft need only keep formation tolerance errors within a few centimeters, 

while actively controlled movable optics compensate for the coarse position errors down 

to the interferometry requirement.  A schematic is shown in Figure 1-5.  By repositioning 

the optics on-board one or both of the vehicles, the light from one collector can be made 

to traverse the same distance as that from another collector. 

 

 

Figure 1-5.  Illustration of optical delay line (ODL) for fine adjustment of science light path from 

collector to combiner in interferometry. 
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The need for full, instantaneous u-v coverage begs the question of mathematical 

completeness.  To exactly invert the Fourier image information requires an infinite 

number of amplitude coefficients and, thus, an infinite number of collector locations.  

This is evidenced in the amount of white space representing missing u-v information in 

the plots of Figure 1-3 and Figure 1-4.  One method for solving the completeness 

problem lies in post-processing techniques for image reconstruction.  Another method 

relies on intelligent placement of finite-sized collector optics. 

To extend the qualitative description of interferometry to finite-sized collectors, 

one can envision a single collector of diameter d as an assembly of sub-collector 

elements.  Image information for u-v points represented by distances between sub-

collector elements is then obtained from a single optic as shown in Figure 1-6.  In fact, a 

single optic of diameter d yields an infinite number of u-v points for all baselines less 

than or equal to d.  All baselines (u-v points) greater than d must then come from sub-

elements on separated spacecraft.  In terms of full, instantaneous u-v coverage, this 

implies that spacecraft must be separated by a distance comparable to their individual 

size, d, to avoid omission of u-v points.  Thus, snapshot-style imaging requires very close 

formation flying. 
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Figure 1-6.  Conceptual image of single collector optic as array of sub-collectors.  The elements i 

and j will yield interferometric information for the u-v point representing the baseline between the 

elements. 

 

1.4. Research Objectives 

The ultimate goal of this research is to explore the feasibility of using Coulomb 

forces between charged spacecraft to maintain non Keplerian formations.  This includes 

examining the spacecraft charge requirements for a variety of formations, and evaluating 

the ability to implement closed-loop charge control to maintain the formations.  Specific 

objectives of this research are shown as following: 

1. Determine the required spacecraft charges within a swarm too maintain an 

equilibrium orbit formations. 

2. Analyze the dynamic behavior of the formations analytically and numerically.  

3. Investigate the stability and controllability of the satellite formations. 
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1.5. Overview 

The remainder of the thesis is organized as follows; Chapter 2 provides some 

background on formation flying from the available literature.  Several satellite formations 

are introduced in Chapter 3 along with the derivation of the dynamic equations.  In 

Chapter 4, analytical and numerical methods are used to find the equilibrium solutions for 

each satellite formation discussed in Chapter 3.  In Chapter 5, stability and controllability 

are determined for some of the most practical satellite formations.  Finally, conclusions 

and recommendations regarding this research are discussed in Chapter 6.  

 

1.6. Assumptions Used in Analysis 

In order to determine and control the dynamic behavior of satellites within the 

formations, Hill’s equations are used in this research.  Hill’s equations, also known as 

Clohessy-Willshire equations, are a set of linearized equations for the relative motion of 

multiple satellites.  Hill’s equations are used for a preliminary design tool before using 

the fully nonlinear dynamic equations.  Three major assumptions are made in Hill’s 

equations: 1.) The reference satellite is in a circular orbit, 2.) The distance between the 

satellites is small in comparison to their altitude to support simplification33, 3.) The 

distribution force that is acting on the satellites is neglected.  In addition, the spacecraft 

are assumed to be spherical.  Furthermore, it is assumed that the ambient plasma Debye 

length at the formation orbital environment is much larger than the spacecraft 

separations.  While not valid for low-Earth orbit, this assumption is reasonable for high 

(geostationary) orbits with separations on the order of tens of meters. 
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2. Literature Review 

2.1. Introduction 

Using several small satellites to perform the same function as one big satellite has 

several benefits.  It not only saves launch, spacecraft bus, and payload costs, but also 

reduces the propulsion system mass, and increases the lifetime of the system.  Several 

papers related to formation flying are summarized.  Since the Coulomb control idea is 

new, there is no literature on its application to maintain spacecraft formations.    

2.2. Satellite Formation Design 

The goal of satellite formation flying is to maintain several satellites in a 

prescribed geometry appropriate to their task (e.g. imaging).  A useful introduction to 

formation design was given in a paper by Lo34.  One of the candidate tasks for spacecraft 

swarms is separated spacecraft interferometry.  The reader can find more information 

regarding interferometry in the literature35, however this study focuses primarily on the 

orbital mechanics. In this section, particular attention is given to the formation design and 

spacecraft dynamics.  Kong, Miller and Sedwick36 developed and compared several “free 

flying” formations for Earth imaging applications.  All the formations were required to 

satisfy: 

• Distances between any collector and the combiner are equal. 

• Satellite separation baseline must be equivalent in the two dimensions to 

provide axi-symmetric angular resolution about the Line-of Sight (LOS) 

(see Figure 2-1). 
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• Full coverage of Earth imager to target the image. 

 

Figure 2-1.  Spacecraft trajectory to Hill coordinate frame. 

 

Hill’s equations were used to analyze the motion of satellites for a 

geosynchronous earth orbit (GEO).  Three architectures are discussed: planar circular 

trajectory, free elliptical trajectory, and free elliptical trajectory (with delay lines).  

The spacecraft velocity impulse, ∆v, can be determined given the spacecraft 

relative acceleration terms.  Comparing the circular to the elliptical trajectories, the 

optimum imaging configuration is obtained using six collectors.  If a large number of 

satellites are used, then the free elliptical trajectory is recommended to obtain the 

maximum imaging configuration.  Also, the circular architecture required higher 

spacecraft velocity impulses to maintain the combiner spacecraft at a fixed location on 

the LOS.  In addition, this paper identified that the smallest distance between each 

collector should be less than two apertures when operating as an Earth imaging system. 

Sabol, Burns and McLaughlin investigated the stability of four basic satellite 

formation flying designs: in-plane, in-track, circular and projected circular formation by 

applying realistic perturbations on these formations37.  Again, the formations were 
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derived from Hill’s equations.  The minimum amount of velocity impulse, ∆v, is 

calculated to balance the J2 disturbance force and stabilize the satellite formations. The 

results show that circular and projected circular formations are very unstable when the 

perturbation is applied.  However, the in-track formation is stable.  The in-plane 

formation will require small, infrequent, along-track maneuvers to offset the effects of 

atmospheric drag.  Therefore, the formation-keeping cost of circular and projected 

circular formations is 38 times higher than in-track and in-plane formations.   

Sparks38,39 also examined the effects of the J2 disturbance using Hill’s equations.  

Again, the Gauss’ variation of parameters was used to derive the minimum amount of 

velocity impulse, ∆v to balance the J2 disturbance force.  A linear control law was 

derived and used for producing an approximately theoretical minimum amount of 

velocity impulse, ∆v.  

In addition, Sedwick, et al.40, investigated passive formation flying.  This paper 

first used dimensional analysis then rigorous analysis to determined the effects of 

perturbation.  Dimensional analysis was used to derive the various scaling laws to 

conduct design trades.  The rigorous analysis determined the perturbative effects.  The 

higher altitude, longer period orbits allowed larger maneuvers for a given amount of fuel 

consumed per orbit.  Also, the ∆v imparted by atmospheric drag at a given orbit is 

proportional to cross-sectional area, and decreased with higher altitudes when the 

atmospheric density decreases.  However, the ∆v imparted by solar pressure increased 

with orbital altitude due to the longer period orbits.   
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Furthermore, Pollard, et al.41 also described a method to determine the orbital 

elements of cluster constellations, to predict the cluster disruption based on the natural 

perturbing forces, and to calculate ∆v that balanced perturbing forces in a LEO.   

2.3. Satellite Formation Control 

Leonard42 controlled two spacecraft positions using the differential drag between 

them.  In this paper, the atmospheric density was assumed uniformly and the velocities 

and ballistic coefficients of the satellites were assumed to be initially equal.  The 

differential drag between two satellites is the difference in drag per unit mass acting on 

each satellite.  The equations of motions were derived and a coordinate transformation 

was made to reduce the formation-keeping problem.  A main control law and the 

eccentricity-minimizing control scheme were derived.  The main control law was able to 

move the average position of the slave vehicles to the origin of the target reference 

coordinate system (i.e. zero) by reducing as much as eccentricity as possible whereas the 

eccentricity-minimizing control scheme activated for reducing the eccentricity when the 

average position of the slaves vehicles was at the target (origin).  The formation-keeping 

problem could be formulated as the simultaneous solutions of both double integrator and 

harmonic oscillator.  Solving both double integrator and harmonic oscillator obtained the 

position of slave vehicle to target.   

Schaub43 studied and discussed a spacecraft formation flying control strategy in 

an orbit that was in terms of specific orbit element differences, and an actual relative orbit 

that was measured in terms of Cartesian coordinates of the rotating chief-satellite-centric 

reference frame.  The coordinate transformation was shown with a numerical study and a 

hybrid continuous feedback control law was developed.  
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Other similar papers that related to the control law were studied by Wang, and 

Hadaegh44, and de Queiroz, et al.45.  These papers considered the problem of coordination 

and control of multiple microspacecraft moving in formation in low Earth orbit (LEO).  

Wang and Hadaegh assumed that each microspacecraft was modeled by a fixed center of 

mass of a rigid body.  Difference schemes for creating a formation pattern were 

discussed, and the explicit control laws for formation-keeping were derived.  The 

discussions of deriving a control law, and the integration of the microspacecraft 

formation coordination and control system with a proposed inter-spacecraft 

communication or computing network were presented.  The result shows that there are no 

collisions between the microspacecraft due to the small magnitude of the initial deviation 

from the desired state.  De Queiroz, et al. used full nonlinear dynamics to develop a 

control law.  Control performance was illustrated using simulation.  A nonlinear adaptive 

control law for the relative position tracking of multiple spacecraft in formation flying 

was developed in this paper.    

Since NASA has recognized multiple spacecraft formation flying (MSFF) as  

future missions, a concept of autonomous formation flying (AFF) of spacecraft 

constellations has been studied by numerous researchers.  This concept is related to the 

control of relative distances and orientations between the spacecraft.  Kapila46 developed 

a mathematically rigorous control design framework for linear control of spacecraft 

relative position dynamics with guaranteed closed-loop stability.  Lau47 described AFF 

concept for extremely precise autonomous relative position and attitude determination for 

satellite formations.  He often used AFF concept in Global positioning system (GPS).  On 

the other hand, Inalhan48 investigated precise relative sensing and control via differential 
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GPS for multiple spacecraft formation.  He presented autonomous control architecture for 

formation flying, and a generalized closed-form solution of passive apertures for 

constellations with mean formation eccentricity.  

In addition, Tan, Bainum and Strong developed a strategy that is able to keep the 

separation distance in between four satellites in a coplanar elliptical orbit configuration 

constant.  This strategy generated a small angular movement in the direction of the axis 

with respect to the axis of the combiner satellite using the force impulse49.  The 

separation distance between collectors was maintained within four percent of nominal 

separation distance for Keplerian orbits.  The perturbation should carefully be evaluated 

due to the effects of atmospheric drag, Earth’s obliqueness, and higher harmonics.   
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3. Dynamics of Charged Satellite Formations 

In this section several formation geometries are introduced which will be used 

throughout the thesis for a variety of analyses.  First, methods for computing individual 

spacecraft charges to maintain dynamic equilibrium are presented, along with specific 

numerical examples.   

Similar to other work in spacecraft formation dynamics, Hill’s equations are used 

here.  Since higher order effects may be of interest in the future, the dynamic equations 

are first developed without any linearizing assumptions, and then reduced to Hill’s 

equations using the conventional binomial expansion of the gravitational terms and 

eliminating high order terms.  With an application slanted towards separated spacecraft 

interferometry, the central reference vehicle is referred to as a “combiner” where the 

surrounding vehicles are called “collectors”.  It is assumed that the combiner has its own 

station keeping system, but the collectors do not.  Thus the only external forces on the 

collectors are the Coulomb interactions between them and the combiner.  

In the remainder of this section the formation geometries are presented with 

specific attention given to the nomenclature used in later sections.  This is followed by 

the dynamic equation derivation leading to a compact set of equations for both Earth 

orbiting and Libration point fixed formations.  

3.1. Formation Geometries 

Six formations were considered.  Five of them were 

• 3 satellites in a line (1 combiner, 2 

collectors) 
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• 3 satellites in a plane (1 combiner, 2 

collectors) 

• 5 satellites in a plane (1 combiner, 4 

collectors) 

• 6 satellites in a plane (1 combiner, 5 

collectors) 

• 7 satellites in 3D dimensions (1 combiner, 6 

collectors) 

were assumed to have a combiner in a circular orbit (shown in Figure 3-1) with collectors 

positioned relative to it.  The sixth case consisted of five satellites (1 combiner and 4 

collectors) in a line located at a stable Earth-sun Libration point.  In the remainder of this 

section, the six formations are described in detail with specific attention given to the 

parameters defining their configuration.  

 

 

 

Figure 3-1.  Combiner and Its Fixed Frame, {c}, in a Circular Orbit.  
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3.1.1. Earth Orbiting Three Satellite - Geometry 

Three different three-satellite formations were considered.  In each case the 

combiner (denoted with a 0 subscript) was assumed to maintain a circular orbit with 

radius r and true anomaly .  The combiner-fixed rotating reference frame, denoted {c} 

and shown in Figure 3-1, was used to describe collector motion relative to the combiner.   

Spacecraft charges were analytically computed such that the three satellites 

formed a line shown in Figure 3-2 where mi are spacecraft masses, iq  are spacecraft 

charges and L  is the separation between the combiner (blue) and either collector (red).  

The distinguishing feature of the formations was their axis alignment.  

 

  

Figure 3-2.  Earth Orbiting Three-satellite Formation - Geometry. 

Figure 3-3 shows the three cases examined with the spacecraft aligned along the 

combiner fixed frame, x, y, and z axes.  These “virtual tether” formations have little 
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imaging use, but, provided insight into the solutions of the more complicated formations 

considered later.  

  

 

Figure 3-3.  The Three Three-satellite Formations Aligned along the x, y, and z {c} Frame Axes. 

3.1.2. Earth Orbiting Triangular – Geometry 

Again the combiner was assumed to be in a circular orbit with radius r and true 

anomaly .  Spacecraft charges were computed analytically such that two collectors 
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formed a triangle in the combiner fixed cc yx ˆˆ − plane shown in Figure 3-4.  Spacecraft 

masses are denoted as mi, spacecraft charges as qi, and L is the distance between the 

combiner and either collector.  The angles between the combiner and the line on which 

the two collectors lie, φ are fixed at 45°.  This formation was motivated by the stability 

and controllability analysis of the Earth orbiting three-satellite formation considered in 

Section 5.3.  It helped to investigate the stability and controllability of more complex 

formations.  

 

 
Figure 3-4.  Earth Orbiting Triangular– Geometry. 

 

3.1.3. Earth Orbiting Five Satellite - Geometry  

As in the previous formation, the combiner was assumed to have a circular orbit with 

radius r  and true anomaly  shown in Figure 3-1.  Spacecraft charges were analytically 
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determined such that the four collectors formed a square in the combiner fixed ˆ ˆc cy z−  

plane with side length 2L  shown in Figure 3-5.  Charges are again denoted iq  and 

masses as im .  This geometry was considered as a starting-point for more practical 

formations that could potentially be used for Earth imaging. 

 

 

Figure 3-5.  The Five-satellite Formation-Geometry. 

3.1.4. Earth Orbiting Six Satellite - Geometry  

Again the combiner was assumed to be in the circular orbit with radius r and true 

anomaly .  Spacecraft charges were computed numerically such that the five collectors 

were in a circle of radius L about the combiner, in its ˆ ˆc cy z−  plane.  In addition, the goal 

was to maintain a pentagon formation, shown in Figure 3-6.  This geometry represented 

an optimal imaging formation for full, simultaneous u-v coverage as determined by 

Cornwell50. 
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Figure 3-6.  In-plane Pentagon Satellite Formation Configuration. 

 
 

3.1.5. Earth Orbiting Seven Satellite – Geometry 

Again, the combiner was assumed to have a circular orbit with radius r and true 

anomaly .  Spacecraft charges were determined analytically such that the six collectors 

formed a tetrahedron shape with a separation distance L shown in Figure 3-7.  Charges 

are again denoted qi, and the spacecraft masses as mi.   
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Figure 3-7.  Earth Orbiting Seven Satellite – Geometry. 

 

3.1.6. Libration Point Five Satellite – Geometry 

The five satellites were assumed to be at a stable Earth-Sun Libration point 

aligned as shown in Figure 3-8.  Charges were numerically computed such that collectors 

1 and 3 had a combiner separation of L1 and collectors 2 and 4 had a separation of L1 + 

L2.  In addition, the system was assumed to rotate about the combiner fixed zc-axis with 

angular rate Ω.  This configuration was chosen for its similarity to an imaging concept 

being considered for NASA’s Terrestrial Planet Findes mission 
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Figure 3-8.  Rotating Five-satellites Formation Configuration. 

 

3.2. Dynamic Equations of the Formations  

 
 

Figure 3-9.  Assuming there are n collectors and one combiner, the position vector notation is 

illustrated for the ith and jth collectors. 
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Figure 3-9 shows the combiner in a circular orbit along with the ith and jth 

collector and will aid the development of the generic dynamic equations for n  collectors.  

Lagrange’s equations will be used where initially the full nonlinear equations are 

developed.  After imposing linearizing assumptions, the Hill equations remain with 

Coulomb interaction forces between spacecraft.  

The position vector from the origin of the combiner-fixed frame to the ith collector 

is denoted ip
�

and has components ix , iy , and iz .  It should be noted that since the 

combiner motion is prescribed we have 

Eqn. 3-1 0000000 ====== zyxzyx ���  

The absolute velocity of the ith spacecraft is 

Eqn. 3-2 ( )
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from which the kinetic energy is developed according to 

Eqn. 3-3 
0

1

2

n
T

i i i
i

T m p p
=

= ∑ � �� �  

The total potential energy is expressed as the sum of the gravitational and Coulomb 

potential energy 

Eqn. 3-4 cg VVV +=  

The gravitational component, gV , is 

Eqn. 3-5 ( )
1

2 22 2

0

n

g i i i i
i

V m r x y zµ
−

=

 = − + + + ∑  
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where µ is the gravitational constant, µ = 3.984 × 1014.  The Coulomb component, cV , is 

Eqn. 3-6 
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where ck is Coulomb’s constant given by 

Eqn. 3-7 
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9
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and ε0 is the electric permittivity of free space. 

Applying Lagrange’s equations  

Eqn. 3-8 
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yields the full nonlinear dynamic equations for the ith spacecraft 

Eqn. 3-9 
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The gravity terms in Eqn. 3-9 can be linearized by first expressing them as 
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Eqn. 3-10 
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and then expanding them in a binomial series  

Eqn. 3-11 2 32( 1) ( 1)( 2)
(1 ) 1

2! 3!
z z z zα α α α αα − − −+ = + + +  

Substituting  

Eqn. 3-12 2 2 2

2

3 / 2

2 i i i ix x y z
z

r r

α = −
+ +

= +
 

into Eqn. 3-11, noting that the orbital radius of the combiner is much larger than the 

collector position vectors (A typical value of r is 4.2 × 107 m and ip
�

 is 10 m).  

Eqn. 3-13 ipr
�>>  

and keeping terms up through first order in iii  z, , yx and  gives 
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Eqn. 3-14 
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where it is noted that 3 2rµ = Ω .  Replacing the gravity terms in Eqn. 3-9 with those of 

Eqn. 3-14 and simplifying yields the final dynamic equations for the ith spacecraft, often 

called Hills equations 

Eqn. 3-15 
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The dynamic equations of the three Earth orbiting formations of Section 3.1.1 through 

Section 3.1.5 are obtained directly from Eqn. 3-15 by setting n  equal to the number of 

collectors, or, 2, 4, 5, and 6 respectively.  The dynamic equations of the Libration point 

formation of Section 3.1.6 are readily obtained from Eqn. 3-9.  For this case 0µ =  and 

0r =  from the Libration point assumption.  The angular rate Ω is now the angular rate of 

the system about its center of mass instead of the angular rate of the combiner about the 

Earth.  Finally, the combiner station-keeping assumption is relaxed allowing it to have 
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three degrees of freedom just like the collectors.  Applying these conditions to Eqn. 3-9 

yields the dynamic equations 

Eqn. 3-16 
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3.3. Summary 

The main result of this section was the formation descriptions and the dynamic 

equations of charged spacecraft, Eqn. 3-15 and Eqn. 3-16.  These will be used extensively 

in Chapter 4 where equilibrium solutions for each formation are investigated.  
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4. Equilibrium Solutions 

Analytical and numerical methods were used to find equilibrium solutions for the 

six constellations introduced in Chapter 3.  The three-satellite formations (Section 3.1.1 

and 3.1.2), five-satellite formation (Section 3.1.3), and seven-satellite formation (Section 

3.1.5) were solved analytically.  The six-satellite formation and the Libration point five 

satellite formation (Section 3.1.4 and Section 3.1.6) were solved numerically due to the 

complexity of the equilibrium equations.  In all cases the equilibrium equations were 

developed by setting the relative speeds and accelerations to zero in the dynamic 

equations of Eqn. 3-15 and Eqn. 3-16, 

Eqn. 4-1 

,n, i          

zyx

zyx

iii

iii

�

������

���

1

0

0

=
===
===

 

For the Earth orbiting formations described by Eqn. 3-15, the equilibrium equations are 

Eqn. 4-2 
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while for the Earth-Sun Libration point five-satellite formation described by Eqn. 3-16 

the equilibrium equations are  



 42

Eqn. 4-3 
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In the remainder of the section the equilibrium equations are explored for each formation.  

Specifically, the formation constraints are first imposed often resulting in simpler 

equilibrium equations.  Equilibrium solutions are obtained.  In addition spacecraft 

charges, iq , will be replaced with the more relevant spacecraft voltage according to 

Gauss’ law, written here in terms of the Coulomb’s constant kc 

Eqn. 4-4 i i
i

c

V r
q

k
=  

where iV  is the spacecraft voltage and ir  is the spacecraft radius, assuming the spacecraft 

is spherical. 

 

4.1. Earth Orbiting Three Satellite Formation - Equilibrium 

As described in Section 3.1.1, three different three-satellite formations were 

considered categorized according to their axis alignment.  The equilibrium equations for 

each case were developed by setting 2n =  in Eqn. 4-2, along with the appropriate values 
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of ix , iy , and iz  based on axis alignment constraints.  For each axis alignment case the 

specific equilibrium equations are developed and solved below. 

4.1.1. X-Axis Aligned Equilibrium Solutions 

For three spacecraft aligned along the combiner coordinate frame’s xc-axis as 

shown in  Figure 3-3(a) require the following relative displacement constraints 

Eqn. 4-5 
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2

1 2 1 2 0
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x L

y y z z
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where L  is the distance from the combiner to either collector.  Forming all six of the 

equilibrium equations from Eqn. 4-2 and eliminating duplicate equations leaves only two 

equations. 
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If we further assume that the collectors have equal mass, 1 2m m m= = and introducing the 

normalized charges defined by  

Eqn. 4-8 0 1 2
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allows Eqn. 4-6 and Eqn. 4-7 to be written without explicit mass and length dependencies 
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where the subscript n denotes a normalized quantity.  If we further define the normalized 

spacecraft voltage 

Eqn. 4-10 in c inV k q=  

then the equilibrium equations of Eqn. 4-9 are 

Eqn. 4-11 

2
1 2 1 0

2
1 2 2 0

4 12 0

4 12 0
n n n n c

n n n n c

V V V V k

V V V V k

+ + Ω =

+ + Ω =
 

These are readily solved analytically.  Given a suitable combiner spacecraft voltage, 0nV , 

the two collectors voltages must be equal and are 

Eqn. 4-12 22
0021 322 Ω−±−== cnnnn kVVVV  

where the collector voltage must satisfy the constraint 

Eqn. 4-13 2 2
0 3 0n cV k− Ω ≥  

Knowing the actual collector mass, m , radius, r , separation, L , and the orbital 

angular rate Ω , the equilibrium collector voltage can be obtained from Eqn. 4-12 and the 

normalization relationship 

Eqn. 4-14 
3

i i
in

V r
V

mL
=  

where the quantity i iV r  is called the reduced charge of spacecraft i .  The normalized 

collector voltages, obtained from Eqn. 4-12, are shown in Figure 4-1 as a function of the 

combiner voltage, 0nV .  The angular rate Ω  is for a geosynchronous orbit, Ω = 

7.2915×10-5 rad/s. 
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Figure 4-1.  Normalized collector charges for a range of combiner charges for the 3-satellite, x-

axis aligned formation 

 
Given any valid combiner potential V0n , there exist two collector voltages, one 

being much smaller in magnitude than the other.  It is clear that the sign of the collector 

voltage must be opposite that of the combiner.  Furthermore, the solutions on the negative 

onV  axis are the same as on the positive 0nV  axis except for a difference in sign. 

Better resolution on the solutions is obtained by examining them on a log-log plot 

as shown in Figure 4-2. 
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Figure 4-2.  Collector equilibrium charges for negative combiner charges using a log-log scale.  

An “optimal” charge set is shown with the yellow dot. 

 

If the combiner and collector have equal charging capability, then it may be prudent to 

find the lowest charge solution.  This is obtained analytically by solving Eqn. 4-1 with 

the added constraint that 1 0n nV V= − , that is, 

Eqn. 4-15 2 2
0 2 2 3n on on cV V V k− = − − − Ω  

which gives 

Eqn. 4-16 0 2n cV k= Ω  
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and is shown on Figure 4-2 as a yellow dot, and in 13.8 V (kg m)-1/2 for a 

geosynchronous orbit.   

Given that the angular rate, Ω is  

Eqn. 4-17 
3R

=   

where µ is gravitational constant and R is the orbit radius which is given as 4.2 × 107 m.  

Substituting Eqn. 4-17 into Eqn. 4-16 gets  

Eqn. 4-18 
30 2

R

k
V c

n

µ
=  

From the constraint that V1n = -V0n, the relationship of V1n for a range of orbit radii 

is shown in Figure 4-3.  The normalized voltage of spacecraft decreases with increasing 

the orbit radii.   
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 Figure 4-3.  Collector equilibrium charges for a range of orbit radii 

 

For a typical set of collector mass and spacing parameters  

Eqn. 4-19 
150

10

m kg

L m

=
=

 

the minimum collector charges can be determined from Eqn. 4-14 and Eqn. 4-16 

Eqn. 4-20 3
1 2 2 (13.8)(387.3) 5.34cV r V r k mL kV m⋅ = ⋅ = Ω ⋅ = = ⋅  

assuming a spacecraft radius of r = 1m, the vehicles must maintain a voltage of 5.34 kV 
to stay in equilibrium.   
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4.1.2. Y-Axis Aligned Equilibrium Solutions 

Here the three satellites are aligned along the combiner’s yc-axis as shown in 

Figure 3-3(b), the corresponding collector displacements are  

Eqn. 4-21 
1

2

1 2 1 2 0

y L

y L

x x z z

=
= −
= = = =

 

where L  is again the distance from the combiner to either collector.   

Substituting Eqn. 4-21 into Eqn. 4-2 for 2n = , the unique equilibrium equations 

are simply 

Eqn. 4-22 2 1 0 1

1 2 0 2

4 0

4 0

q q q q   

q q q q   

+ =
+ =

 

Since in this case there is no mass or separation dependency, charge normalization is not 

employed.  In addition, there is no dependency on the combiner angular rate, Ω .  The 

solution to Eqn. 4-22 is simply 

Eqn. 4-23 1 2 04q q q= = −  

or in terms of the collector voltages 

Eqn. 4-24 1 2 04V V V= = −  

where it is assumed that the radii of the collectors and the combiner are equal.  This 

rather simple result is plotted in Figure 4-4 where it is noted that the trivial solution of 

setting all charges to zero and letting the formation free-fly is permitted. 
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Figure 4-4.  Collector voltages as a function of combiner voltage for the three satellite, y-axis 

aligned formation. 

 

4.1.3. Z-Axis Aligned Equilibrium Solutions 

Consider the three satellites aligned along the combiner’s zc-axis shown in Figure 

3-3(c ).  The corresponding combiner displacements are  

Eqn. 4-25 
1

2

1 2 1 2 0

z L

z L

x x y y

=
= −
= = = =

 

Substituting Eqn. 4-25 into Eqn. 4-2 and letting 2n =  yields 2 unique equilibrium 

equations 
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Eqn. 4-26 
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which when normalized using Eqn. 4-8 and Eqn. 4-10 yield 

Eqn. 4-27 
2

1 2 1 0

2
1 2 2 0

4 4 0

4 4 0
n n n n c

n n n n c

V V V V k   

V V V V k   

+ − Ω =

+ − Ω =
 

assuming that the collector masses are equal as well as all spacecraft radii. 

The solution to Eqn. 4-27 again requires that the two collectors have equal charge 

and is 

Eqn. 4-28 2 2
1 2 0 02 2n n n n cV V V V k= = − ± + Ω  

Unlike the xc-axis aligned case of Section 4.1.1 there is no constraint on the combiner 

charge.  The normalized collector voltages are shown in Figure 4-5 for a range of 

combiner charges 



 52

−20 −15 −10 −5 0 5 10 15 20
−100

−80

−60

−40

−20

0

20

40

60

80

100

   V
0n

  ( V ( kg m)−1/2 ) 

   
V

1n
 a

nd
   

V
2n

  (
 V

 (
 k

g 
m

)−
1/

2  )

  

Figure 4-5.  Normalized collector voltages for a range of combiner voltages for a geosynchronous 

orbit.  The yellow dots indicate “optimal” voltages. 

 

Similar to the xc-axis aligned solution, there are two equilibrium voltages for any 

combiner voltage, one small and one large.  However, the small-charge solution is now of 

the same sign as the combiner, and the large-charge solution of opposite sign.  Assuming 

all the spacecraft have the same radius, an optimal normalized voltage (lowest total 

charge in formation)can be computed by forcing the collector voltage to be equal to the 

combiner.  This results in all spacecraft having the same voltage given by 

Eqn. 4-29 0 1 2

4

5n n n cV V V k= = = ±Ω  
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and is 6.18 V(kg m)-1/2  units for geosynchronous orbit.  Substituting Eqn. 4-17 into Eqn. 

4-29 gets 

Eqn. 4-30 
3210 5

4

R

k
VVV c

nnn

µ
±===  

The normalized voltages of the combiner and collector contain same charge in both 

positive and negative sign.  The relationship of combiner (or similar collector) 

equilibrium voltages for a range of orbit radii is shown on Figure 4-6.  Again, the 

normalized voltage of spacecraft decreases with increasing the orbit radii.   
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Figure 4-6.  Combiner (or collector) equilibrium voltage for a range of orbit radii 

 
Using the same “typical” spacecraft and spacing parameters of Eqn. 4-19, the 

optimal spacecraft voltages, relative to their equal radii are 
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Eqn. 4-31 3
0 1 2

4
(6.18)(387.3) 2.39

5 cV r V r V r k mL kV m⋅ = ⋅ = ⋅ = ±Ω ⋅ = = ⋅  

 

Table 4-1 summarized the results of the spacecraft reduced charges at equilibrium 

state for three-satellite formation aligned in the xc and zc- axis.  The equilibrium solutions 

of the spacecraft reduced charges at yc-axis are not required for holding the satellite 

because they were on the reference Keplerian orbit.   

 

Table 4-1.  Equilibrium solution spacecraft reduced charges for three-satellite case in 

geosynchronous orbit for 150 kg spacecraft separated by L = 10 m. 

Optimal Reduced Charges (kV m) Cases 
V0 r V1 r V2 r 

xc 13.8 -13.8 -13.8 
zc ±2.39 ±2.39 ±2.39 

 
 
The spacecraft require more voltage to maintain equilibrium in the xc-axis than zc-

axis.  Referring Figure 3-1, the spacecraft are at a higher orbit than geosynchronous when 

aligned in the xc-axis.  However, when the spacecraft aligned at the zc-axis, they are at the 

geosynchronous altitude but constantly changing its nodal crossing.   

 

4.2. Earth Orbiting Triangle Satellite Formation – Equilibrium 

As described in the previous chapter, the Earth orbiting triangle satellite formation 

is shown in Figure 3-4.  The equilibrium equations were derived by setting n = 2 in Eqn. 

4-2, along with appropriate values of xi, yi, and zi based on the spacing requirements.  The 

relative constraint displacements are given as  
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Eqn. 4-32 
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where L is the distance between the combiner and each collector, and φ is the angle 

between the combiner and the line on which the two collectors lie.  Substituting Eqn. 

4-32 into Eqn. 4-2 and assuming the masses of the collectors are the same, i.e. m1 = m2 

=m, the equilibrium equations are reduced to the four unique conditions presented in 

Eqn. 4-33. 

Eqn. 4-33 
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Using the normalized charge definition (Eqn. 4-8) applied to Eqn. 4-33 eliminates 

the explicit mass and length dependencies, yielding  

Eqn. 4-34 
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where the subscript n denotes a normalized quantity.  Employing the definition of the 

normalized spacecraft voltage (Eqn. 4-10), the equilibrium equations are further 

simplified to 

Eqn. 4-35 
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By observation, the two collector spacecraft voltages must be equal, i.e. V1n = V2n, 

leaving only two unique equations while can be solved analytically.  Interestingly, the 

solution for any given orbital radius is simply a point, specifically.   

Eqn. 4-36   
3

1

2

0
n

c
n V

k
V

Ω
= �  

where  

Eqn. 4-37 2
21 23 Ω±== cnn kVV  

Knowing the actual collector mass m, radius r, separation L, and the orbital 

angular rate Ω, the normalized combiner voltages V0n can be obtained.  Figure 4-7 

compares the single point solution of this section (blue dots) to the loci of solutions for 

three satellites aligned along the xc-axis presented previously (Section 4.1.1).   
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Figure 4-7.  Normalized collector charges for the triangle satellite formation and the three-satellite 

formation aligned at the x-axis 

The collector charges for triangular formation are less than the three-satellite 

aligned along xc –axis because the separation between collectors 1 and 2 is smaller in 

triangular formation.  Using Eqn. 1-3 to determine the total Coulomb force exert on 

collector 1 in three-satellite formation aligned at the xc-axis (see Figure 3-2), the 

attraction force and repulsion force on collector 1 are  

Eqn. 4-38 
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Since the attraction force and repulsion force exert on collector 1 should be equal, 

and q1 = q2 from equilibrium solution, so Eqn. 4-38 becomes 

Eqn. 4-39 01 4qq =  

However, in triangular formation (see Figure 3-4), the attraction and repulsion 

force exert on collector 1 are 

Eqn. 4-40 

( )2
21
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10
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24
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FF

L

qq
FF
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==

==

 

When the attraction force is equal to repulsion force at collector 1 and q1 = q2 

from equilibrium solution gets 

Eqn. 4-41 01 2qq =  

Comparing the charge of collector 1 in the two different formations by assuming 

q0 as constant, the charge of collector 1 in the triangular formation is less than three-

satellite formation aligned at the xc-axis due to the smaller separation between collectors 

1 and 2.   

In order to better view the solutions, a log-log scale is plotted and shown in Figure 

4-8.  The blue dot is the only solution in the triangular formation and the yellow dot is the 

optimum charge solution if V1n = -V0n in the three-satellite formation.     
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Figure 4-8.  Collector equilibrium charges for negative combiner charges using a log-log scale at 

triangle satellite formation and the three-satellite formation aligned at the x-axis. 

 

The normalized collector and combiner voltages for the triangle satellite 

formation are 14.2 V(kgm)-1/2 and -10.1 V(kgm)-1/2 for a geosynchronous orbit 

respectively.  Typical charges for V0n and V1n are determined using Eqn. 4-14 for the 

collector mass and spacing parameters given in Eqn. 4-19, and are  

Eqn. 4-42 

( )( )

( )( ) mkVmL
V

k
rV

mkVmLkrVrV

n

c

c

⋅==⋅
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0
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���
 

where r is the spacecraft radius.   
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4.3. Earth Orbiting Five Satellite Formation - Equilibrium 

Consider the square, in-plane, 5-satellite formation shown in Figure 3-5.  The 

relative position constraints are 

Eqn. 4-43 

1 2 3 4

1 3 2 4

2 1

4 3

0

0

x x x x               

y y z z

y z L

y z L    

= = = =
= = = =
= = −
= =

 

When substituted into the equilibrium equations (Eqn. 4-2) yield the following subset of 

unique necessary conditions for equilibrium. 

Eqn. 4-44 

1 4 1 2
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− − − − + Ω =   

 
− − − −   

1 4 3 4

0

0q q q q

=

− + =

 

Two different analytical solutions were obtained.  The first is trivial and consists 

of setting 2 4 0q q= = , resulting in the same zc-axis aligned three-satellite formation 

considered in Section 4.1.3.  Applying this to Eqn. 4-44 results in 
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Eqn. 4-45 

2
0 1 1 32

2
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1
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These are the same results of Eqn. 4-26 except, due to a collector numbering change 

between the 3 and 5 satellite formations, the subscripts of the three-satellite system are 

 
1 3

2 1

→
→

 

Thus, the solutions obtained for the zc-axis aligned three-satellite formation apply to this 

special case. 

The second set of solutions assumes the following charge symmetry 

Eqn. 4-46 
1 3

2 4

q q

q q

=
=

 

resulting in only two unique equilibrium equations compared to eight in the original set 

of Eqn. 4-44 

Eqn. 4-47 
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Assuming a value of 4q , Eqn. 4-47 can be solved conditionally such that the 1q  and 3q  

spacecraft charges have the form 

Eqn. 4-48 1 1 4( )q q q=  

Using these values of 1q , the combiner charge, 0q  can be expressed as 

Eqn. 4-49 0 0 1 4( , )q q q q=  
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This procedure works equally well when the equilibrium equations are 

represented using the normalized voltages from Eqn. 4-8 and Eqn. 4-10, 

Eqn. 4-50 

2 2
0 3 3 3 4

2
0 4 4 3 4

4 2 2 0

4 2 2 0

n n n n n c

n n n n n

V V V V V k

V V V V V

+ + − Ω =

+ + =
 

assuming all spacecraft are of equal radius. 

The solutions for collector 1 and 3 normalized voltage are 

Eqn. 4-51 2 2
1 3 4 4

1 1 16

2 2 2 2 1
n n n n cV V V V k= = ± − Ω

−
 

where 4nV  (and similarly 2nV ) must satisfy the constraint 

Eqn. 4-52 0
122

16 22
4 ≥Ω

−
− cn kV  

Since 1nV  and 3nV  are known at this point, the combiner normalized voltage is readily 

computed from 

Eqn. 4-53 0 4 3

1 2

4 2n n nV V V= − −  

Figure 4-9 shows the two sets of 1nV , 3nV  solutions to Eqn. 4-51, and the 

corresponding 0nV  from Eqn. 4-53 for a range of 2nV , 4nV  values satisfying the constraint 

of Eqn. 4-52 in a geosynchronous orbit.  The red lines are the locus of solutions when 4nV  

is positive whereas the magenta lines are the solution loci for negative 4nV .  The dashed 

or solid portions of the curves represent formation solution sets.  For instance, if V2n is 

chosen to be 50 V(kgm)-1/2 , then the solution requires either V1n = V3n = -46 V(kgm)-1/2 
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with V0n = 47.6 V(kgm)-1/2, or V1n = V3n = 2.6 V(kgm)-1/2 with V0n = -14.3 V(kgm)-1/2.  

Using the sum of the squared voltages as a cost function,  

Eqn. 4-54 ∑
=

=
4

0

2

i
inVJ  

An optimal charge set can be computed analytically as 

Eqn. 4-55 
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and are shown as yellow dots in Figure 4-9. 
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Figure 4-9.  Normalized voltages of collectors 1 and 3, and the combiner for a range of 

acceptable collector 2 and 4 normalized voltages 

 

Using the “typical” spacecraft parameters of Eqn. 4-19, the actual spacecraft 

voltages, relative to their assumed equal radii, are 

Eqn. 4-56 
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4.4. Earth Orbiting Six Satellite Formation - Equilibrium 

The equilibrium equations for the pentagon shaped formation, shown in Figure 3-

6, were obtained by imposing the formation constraints  

Eqn. 4-57 
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on Eqn. 4-2 where the central angleφ  is nominally 72$ .  Due to the lack of symmetry, 

the resulting ten equilibrium conditions were too complicated to yield an analytical 

solution.  Instead, a numerical optimization approach was employed.  The cost function 

J was defined as the sum of the squared residuals of Eqn. 4-2, that is 

Eqn. 4-58 
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where all the spacecraft masses were assumed to be equal.  

The first approach was to fix the central angle at 72$  and allow all six spacecraft 

charges to vary.  MATLAB’s sequential quadratic programming, constrained 

optimization code was then used to determine the “best” set of charges to minimize J .  
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Unfortunately, there was inadequate degrees-of-freedom to permit a solution.  The best 

value of J  was only about 10% of the 2Ω  term in the residual equations.  So, while a 

near-equilibrium solution could be found, there were not enough optimizable parameters 

to permit a solution.  

The next approach was to increase the number of degrees-of-freedom by 

permitting near-pentagon formations.  Specifically, the spacecraft were constrained to lie 

in a circle about the combiner, but were allowed to stray from the 72$  central angle by 

10%.  In addition one combiner was constrained to lie on the yc-axis.  The circle 

constraint maintained the integrity of the formation’s imaging attributes while allowing 

the minimum cost function to be 3 orders of magnitude lower than the 2Ω  terms in the 

residuals.  Although no proof is given showing that these are true equilibrium solutions, 

they do represent operating points that should require only small amounts of corrective 

thrust.   

Equilibrium position solutions for four different formation radii are shown in 

 Figure 4-10 with the numerical values of the central angles given in Table 4-2.  Again, 

the spacecraft radii were assumed equal, the orbit was geosynchronous, and the “typical” 

spacecraft parameters of Eqn. 4-19 were used.  Normalization was not employed due to 

the spacecraft specific nature of the solution approach.  
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 Figure 4-10.  Equilibrium collector positions for 4 different radii from the combiner. 

 

Table 4-2.  Central angle results for 4 different radii. 

Central Angle Distance 
L (m) φ1 

(72°) 
φ2 

(144°) 
φ3 

(216°) 
φ4 

(288°) 
5 65.36 141.14 218.89 294.65 
10 70.89 143.62 216.36 289.09 
15 69.17 142.88 217.11 290.83 
20 84.18 156.15 203.84 275.82 

 
 
The corresponding spacecraft specific voltages are plotted in  Figure 4-11 

with the numerical values given in Table 4-3.  Examining the results indicates that 

collectors 2 and 5, and collectors 3 and 4 may require identical charge.  However, this 

could not be shown analytically.  Furthermore, when imposed as a constraint during 

optimization, this resulted in larger cost function solutions.  
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 Figure 4-11.  Spacecraft equilibrium reduced charges for 4 different formation radii. 

 

Table 4-3.  Equilibrium solution spacecraft reduced charges for four different collector radii. 

Optimal Reduced Charges (kV m) Radius 
L (m) V0 r V1 r V2 r V3 r V4 r V5 r 

5 2.38 -1.00 -2.4 -1.99 -1.99 -2.40 
10 8.47 -5.21 -7.56 -6.33 -6.33 -7.56 
15 13.34 -7.19 -12.78 -10.35 -10.35 -12.78 
20 1.18 -6.04 -25.55 -4.47 -4.47 -25.55 

 
 

4.5. Earth Orbiting Seven-Satellite formation – Equilibrium 

The Earth orbiting seven-satellite formation is described in Chapter 3 and shown 

in Figure 3-7.  The dynamic equilibrium equations were derived by setting n = 7 in Eqn. 

4-2, along with the specific relative distance constraints that are given as 
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Eqn. 4-60 
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where L is the distance from the combiner to either collector in meters.  Assuming the 

collectors’ masses are the same, the eighteen equilibrium equations are 

Eqn. 4-61 
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Assuming the following charge symmetry 

Eqn. 4-62 
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and eliminating duplicated equations leaves only three unique equilibrium equations,  

Eqn.4-63 
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Assuming a value of q2 (or similarly q4), Eqn.4-63 can be solved analytically such 

that the collectors’ charges are functions of q2  

Eqn. 4-64 
)(

)(

2565

2131

qqqq

qqqq

==
==

 

The combiner charge, q0 can then be expressed as 

Eqn. 4-65 ),,( 52100 qqqqq =  

Employing the normalized spacecraft voltage definition of Eqn. 4-8 and Eqn. 

4-10, and assuming all the spacecraft have the same radius, the equilibrium equations can 

be represented in terms of normalized spacecraft potentials as  
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Eqn. 4-66 
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The normalized voltages for collectors 1 and 3, and collectors 5 and 6 are  

Eqn. 4-67 

( ) ( )
( ) ( ) 22

2265

22
2231

2213
16

249

7

2212

2

1

221
16

249

7

2212

2

1

Ω−−−+−±==

Ω−+−+−±==

cnnnn

cnnnn

kVVVV

kVVVV
 

where V2n or V4n must satisfy the constraint 

Eqn. 4-68 
( )

0
7

12216 22
2 ≥Ω+− cn kV  

Therefore, the normalized voltages for the combiner can be determined as  

Eqn. 4-69 
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Figure 4-12 shows the two sets of collector voltages solutions (V1n, V3n, V5n, and 

V6n) from Eqn. 4-67, and the corresponding combiner voltages V0n, from Eqn. 4-69 for a 

range of V2n and V4n values that satisfy the constraint in Eqn. 4-68 in a geosynchronous 

orbit.  The solutions on the right side are determined when V2n is positive whereas the 

solutions on the left are determined when V2n is negative.  Again, the dashed or solid 

portions of the curve represent formation solution sets.  For instance, if V2n is chosen to 

be 50 V(kgm)-1/2  , then the solution requires either V1n = V3n = 49.7 V(kgm)-1/2, and V5n = 
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V6n = 55.5 V(kgm)-1/2 with V0n = -87.1 V(kgm)-1/2 or V1n = V3n = 1.75 V(kgm)-1/2, and 

V5n = V6n = -5.26 V(kgm)-1/2 with V0n = -9.94 V(kgm)-1/2.   
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Figure 4-12.  Normalized voltages of collectors 1 and 3, 5 and 6, and the combiner for a range of 

normalized voltages of collectors 2 and 4 which satisfy the constraint. 

 
Using the sum of the squared voltages as a cost function, an optimal charge set 

can be calculated analytically as 
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Eqn. 4-70 
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For a better view, the normalized charges of the collectors 1 and 3 are examined 

on a log-log plot that is shown in Figure 4-13.  . 
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Figure 4-13.  Collector equilibrium charges for negative collector 2 charges using a log-log scale.  

An “optimal” charge set is shown with yellow dot 
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The optimal charge for collectors 2 and 4 is 20.45 V(kgm)-1/2 in a geosynchronous 

orbit.  The yellow dot represents the optimal charges of collectors 1 and 2, which is about 

10.2 V(kgm)-1/2 in a geosynchronous orbit.  Using the typical collector mass and the 

length parameters from Eqn. 4-19, the minimum charges of collectors 2 and 4, and 

collectors 1 and 3 are calculated as 

Eqn. 4-71

( ) ( )( )

( ) ( )( ) mkVmLkrVrV
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c

c

⋅±=±=⋅+Ω±=⋅=⋅

⋅±=±=⋅+Ω±=⋅=⋅

95.33.3872.10
7

122
2

92.73.38745.20
7

122
4

3
31

3
42

 

where r is the collector radius. 

The optimal charges of the normalized voltages of collectors 5 and 6 are shown in 

Figure 4-14.   
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Figure 4-14.  Normalized collector voltages for a range of collectors 2 and 4 for a 

geosynchronous orbit.  The “optimal” voltages are indicated as yellow dots 

 
The optimal charges (yellow dots) are 28.9 V(kgm)-1/2 in geosynchronous orbit.  

Using the same mass and length parameters of Eqn. 4-19, the optimal spacecraft voltages, 

relative to their equal radii are given as 

Eqn. 4-72 
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Again, the optimal charge of normalized voltage of the combiner is shown in 

Figure 4-15. 
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Figure 4-15.  Normalized collector voltages for a range of combiner voltages for a 

geosynchronous orbit.  The yellow dots indicate “optimal” voltages 

 
The optimum voltages are 32.79 V(kgm)-1/2 for geosynchronous orbit.  Again 

using typical spacecraft mass and distance parameters and assuming the spacecraft radii 

are equal, the minimum spacecraft voltages are given as following 

Eqn. 4-73 
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Table 4-4.  Optimal reduced charges for all spacecraft in seven-satellite formation. 

Optimal Reduced Charges (kV m) 
V0 r V1 r V2 r V3 r V4 r V5 r V6 r 

� 12.70 ±3.95 ±7.92 ±3.95 ±7.92 ±11.19 ±11.19 
 

4.6. Libration Point Five Satellite Formation - Equilibrium 

As discussed in Chapter 3, this case is different from those considered previously 

as the formation is not orbiting the Earth, but rather is at an Earth-Sun Libration point.  

The system of 5 spacecraft is shown in Figure 3-8 where it is assumed to rotate about the 

zc-axis with angular rate Ω .  The fifteen equilibrium equations of Eqn. 4-3 are greatly 

simplified by enforcing the geometry constraints 

Eqn. 4-74 
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and imposing the symmetry requirements 

Eqn. 4-75 
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Only two unique equilibrium equations remain 

Eqn. 4-76 
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where 1L  is the distance between the combiner and collectors 1 and 3, and 2L  is the 

distance between collectors 1 and 2 (and also collectors 3 and 4).  Both of these equations 

can be solved for 0ck q , and then equated yielding the single quadratic 

Eqn. 4-77 2
2 2 1 2 0 0a q a q a+ + =  

where 

Eqn. 4-78 
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Eqn. 4-77 can be solved for 2q  assuming a range of 1q  is known that satisfies the 

constraint 

Eqn. 4-79 2
1 2 04 0a a a− ≥  

For each 1q , 2q  pair, a unique kc 0q  can be obtained from either of the equilibrium 

conditions in Eqn. 4-76, such as 

Eqn. 4-80 
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where kc is  Coulomb’s constant. 

One approach to finding an optimum equilibrium point is to minimize the cost 

function 
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Eqn. 4-81 2
2

2
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A specific example was considered with the following spacecraft and separation 

parameters 

Eqn. 4-82 
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with all spacecraft radii being equal.  Three different formation-spin rates, Ω , were 

investigated 

Eqn. 4-83 
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Specific spacecraft voltages are shown in Figure 4-16 (collectors 2 and 4) and 

Figure 4-17 (combiner) for a range of collector 1 and 3 voltages using the spin rate of 

1Ω .  Using the cost function given in Eqn. 4-81, an optimal solution was obtained 

resulting in the smallest charge across all spacecraft and is shown with yellow dots on the 

plots.  The optimal spacecraft voltages for all spin rate cases are provided in Table 4-5. 
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Figure 4-16.  All sets of collector 2 and 4 reduced charges for a range of collector 1 and 3 

charges for a spin rate of 0.5 rev/hr.  The yellow dots indicate the “optimal” solution resulting in 

the smallest charge across all spacecraft. 
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Figure 4-17.  All sets of combiner reduced charges for a range of collector 1 and 3 charges for a 

spin rate of 0.5 rev/hr.  The yellow dots indicate the “optimal” solution resulting in the smallest 

charge across all spacecraft. 

 

Table 4-5.  Optimal reduced charges for all spacecraft using three different spin rates. 

Optimal Reduced Charges (kV m) Spin Rate 
(rad /s) V0 r V1 r V2 r V3 r V4 r 

8.73E-06 3.73E-02 -1.52E+00 1.52E+00 -1.52E+00 1.52E+00 
8.73E-05 3.73E-01 -1.52E+01 1.52E+01 -1.52E+01 1.52E+01 
8.73E-04 3.73E+00 -1.52E+02 1.52E+02 -1.52E+02 1.52E+02 

 
 

It is noted that for the “optimal” solutions assumed the condition 

Eqn. 4-84 2 1V V= −  
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is required, resulting in a linear relationship between the spacecraft charges and the spin 

rate as observed in Table 4-5.  This will not be the case for other solutions. 

 

4.7. Summary 

Equilibrium spacecraft charges were computed for several formation examples.  

In theory, once the formation is placed in an equilibrium configuration, it should remain 

there.  If the equilibrium state is stable, then the formation will return to it given small 

external perturbations. 

For small numbers of spacecraft (up to 7) analytical solutions were readily 

obtained.  A numerical optimization approach was developed for determining equilibrium 

solutions for formations with n  spacecraft illustrated by the six-satellite, pentagon-like 

formation of Section 4.4 and the libration point five satellite in Section 4.6.  Future work 

should address the equilibrium point stability question including active charge control.  

One approach would be to modify the optimality criteria used for selecting a particular 

solution from the solution loci to include a relative stability metric. 
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5. Stability and Controllability 

 

5.1.  Introduction 

In chapters 3 and 4, the dynamic equations and equilibrium solutions were 

determined.  Although formations based on equilibrium solutions may be attractive from 

a propellant cost perspective, they may not be stable, or controllable.  The stability and 

controllability of satellite formations are investigated in this chapter.   

First, some fundamental concepts of dynamic system stability and controllability 

are reviewed. The Coulomb force formation equations are then linearized in both the 

states and their inputs.  Stability and controllability are then evaluated for three 

formations: 

• Earth orbiting three-satellite formation (Section 4.1.1) 

• Earth orbiting triangular formation (Section 4.2) 

• Earth orbiting seven-satellite formation (Section 4.5) 

 

5.2. Stability Review 

5.2.1. Linear System Stability 

Given the linear dynamic system 

Eqn. 5-1 uBxAx +=�  
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where x  is an n × 1 state vector, A  is the n × n state matrix, B  is the n × m input 

weighting matrix and u  is a m × 1 vector of inputs, the system is stable if all the 

eigenvalues of A  have negative real parts.  Physically, given any initial condition x0 the 

state will progress to the origin, bounded above by an exponentially decaying function of 

time.   

5.2.2. Nonlinear System Stability – Lyapunov Stability 

There are several methods for determining the stability of a nonlinear system most 

of which are based on two by Lyapunov.  Lyapunov’s Direct Method has its foundation 

in the observation that if the total energy of a system decreases with time, the system 

motion decays to 0 51,52.  Lyapunov generalized this approach to energy-like functions 

(positive definite, Lyapunov candidate function denoted V).  If the directional derivative 

of V in the direction f  is always negative then the equilibrium point is stable.  One 

difficulty in applying this method is the determination of a Lyapunov function. 

For nonlinear system of the form 

Eqn. 5-2 )(xfx =�  

stability must be described in terms of the system equilibrium points that satisfy 

Eqn. 5-3 0)( =xf  

Physically, if the system is placed at an equilibrium point then released it will stay 

there.  Stability in sense of Lyapunov answers the question “if the system is perturbed 

from an equilibrium point, will its motion remain bounded?”  
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 Formally, we say that an equilibrium point at 0=x  is stable (in the sense of 

Lyapunov) if 00 >∃>∀ r R  such that if rx <)0(  then 0)( ≥∀< tRtx .  It should be 

noted that  represents any vector norm (e.g. Euclidean) and any equilibrium point 

could be shifted to 0=x  using a transformation of variables. 

 Lyapunov’s Indirect Method52 is based on the linearized form of the dynamic 

equations.  That is, expanding the nonlinear for )(xf  about the equilibrium point at the 

origin 

Eqn. 5-4 )()( xrxAxf +=  

as long as )(xf  is not an explicit function of time, and A  is n × n matrix Jacobian of f  

Eqn. 5-5 
0=

∇=
x

fA  

Lyapunov showed that if A  is stable (all its eigenvalues having negative real parts), then 

this behavior will dominate any effects of )(xr  and the equilibrium point is stable.  If A  

has any eigenvalues with positive real parts, then the equilibrium point is unstable.  

Finally if A  has no positive real eigenvalues, but one or more eigenvalues that lie on the 

imaginary axis, then the system’s stability is unknown.  That is, the ignored remainder 

terms )(xr , decide the stability.  This approach will be used in Sections 5.5.3, 5.6.3 and 

5.7.3 to assess the stability of the three formations mentioned in the introduction. 

 It should be noted that even if a Lyapunov’s Indirect Method shows an equilibrium point 

to be unstable a closed-loop controller could be applied to stabilize.  Unfortunately, its 

usefulness will be limited to some unknown region about the equilibrium point. 
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5.3. Controllability Review 

A linear system 

Eqn. 5-6 uBxAx +=�  

is controllable if x∀  (n ×1 state vector) ∃ an input u  ( control signal with m ×1 matrix).  

Physically, this says that it is theoretically possible to move a system from any initial 

state to any final state using the available inputs.  Linear system controllability is easily 

checked by examining the rank of the controllability matrix 

Eqn. 5-7 [ ]BABABABW n 12 −= �����  

If the controllability matrix has rank n, then the system is controllable. 

This idea can be extended to nonlinear system, which is affine in the input52 

Eqn. 5-8 uxgxfx )()( +=�  

Unfortunately, our Coulomb controlled spacecraft Eqn. 3-15 are non affine in the input.  

Therefore, we will assess controllability by examining the controllability of a completely 

linearized system. 

 

 

5.4.  Linearized Dynamic Equations  

In Section 5.4 through Section 5.7, stability (using Lyapunov’s Indirect Method) 

and controllability are investigated for three formations.  Both features will be 
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investigated numerically by computing eigenvalues of the linearized state matrix and the 

controllability matrix of the state equations.  To reduce the effect of round-off errors, 

normalized and linearized dynamic equations will be created based on nondimensional 

time as described below.   

The Coulomb forced Hill’s equations from Eqn. 3-15 are first expressed using 

nondimensional time with the substitution  

Eqn. 5-9 tT Ω=  

The relative speeds and accelerations can be expressed as 

Eqn. 5-10 
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Substituting Eqn. 5-10 into Hill’s equations (see Eqn. 3-15) gives 

Eqn. 5-11 
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Coulomb’s constant kc, collector mass mi = m (assuming all collector masses are 

equal), and the orbital angular rate Ω, will be combined to normalize the charges 

according to 
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Eqn. 5-12 
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The normalized, and nondimensional time representations of the dynamic equations are  

Eqn. 5-13 
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Linearization is performed by expanding all the displacements and charges as 

being the sum of a nominal value (denoted with an over bar) and a perturbation, that is  

Eqn. 5-14 
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Next, the denominator of Eqn. 5-13, 
3

ji pp
�� − is expanded in a binomial series and 

multiplied by the numerator, retaining terms up to first order in δ.  Making the 

substitutions described above, the denominator is  
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Eqn. 5-15
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Eqn. 5-16 
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Thus, 
3−

− ji pp
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 can be simplified as 

Eqn. 5-17 
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Substitute both Eqn. 5-14 and Eqn. 5-17 into Eqn. 5-13, the Coulomb forcing terms of 

Hill’s equations are 
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Eqn. 5-18 
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where 

 

Eqn. 5-19 
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and the equilibrium terms have been removed since they are cancelled with the 

equilibrium terms in the left hand side of Hill’s equations.  

The final linearized dynamic equations for the ith satellites are given by 

substituting Eqn. 5-19 into Eqn. 5-18. 
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Eqn. 5-20
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Eqn. 5-20 will be used to form the B  A and  matrices needed to evaluate stability 

and controllability in the remainder of this Chapter.  
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5.5.  Earth Orbiting Three-satellite Formation 

The three-satellite formation aligned on the x-axis shown in Figure 3-3(a) and 

described in Section 3.1.1 and the equilibrium equations and solutions is examined in 

Section 4.1.1. 

5.5.1. Linearized Dynamic System 

Six dynamic equations are formed by substituting the relative displacement 

constraint, Eqn. 4-5, into Eqn. 5-20.  

Eqn. 5-21 0
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where 

Eqn. 5-22 
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After finding the dynamic equations, the equilibrium equations were obtained 

from Section 4.1.1 assuming the relative speeds and acceleration are equal to zero, and 

the perturbation terms ( )iiii q��� ˆ and ,,,  must equal zero as well.  The linearized 

dynamic system is formed as 

Eqn. 5-23 
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where A  is a 12×12 matrix, x  is a 12×1 matrix, B  is a 12×3 matrix, and u  is a 3×1 

matrix.  Using the variables of in Eqn. 5-22, matrices A  and B  are 

Eqn. 5-24 
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0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

A = 0 0 0 0 0 0 0 0 0 0 0 1
a 1 0 0 a 2 0 0 0 -2 0 0 0 0

0 a 3 0 0 a 4 0 2 0 0 0 0 0

0 0 a 5 0 0 a 4 0 0 0 0 0 0

a 2 0 0 a 1 0 0 0 0 0 0 -2 0

0 a 4 0 0 a 3 0 0 0 0 2 0 0

0 0 a 4 0 0 a 5 0 0 0 0 0 0

 

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

B = 0 0 0
b0 b1 b2

0 0 0
0 0 0

b3 b4 b5

0 0 0
0 0 0  

 

5.5.2. Stability and Controllability of Earth Orbiting Three-satellite Formation 

After finding the A  and B  matrices from linearized dynamic equations, Matlab is 

used to find the eigenvalues of A  and the rank of the controllability matrix.  There exist 

eigenvalues of A  having positive real parts, so the equilibrium point is unstable.  In 

addition, the rank of the controllability matrix is 8 instead of 12 so it is also 

uncontrollable.   

Earth orbiting three-satellite formation aligned at the x-axis is obviously unstable 

and uncontrollable because there are no forces acting in the y and z-direction, which 
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means there is nothing to balance the small tiny forces that exist in the y and z-direction.  

However, if the linear system is constrained to motion in the x-direction, which means B  

is a 4×4 matrix, then the linear system is controllable.  

Eqn. 5-25  
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B = b0 b1 b2
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5.6. Earth Orbiting Triangular Formation 

This formation was motivated by the controllability results of the previous 

section.  Specifically, the actuation capability is required along more axes.  The formation 

diagram is shown in Figure 3-4 and described in Section 3.1.2.  The equilibrium 

equations and solutions are determined in Section 4.2.   

5.6.1. Linearized Dynamic System 

Six linearized dynamic equations are first derived from Eqn. 5-20, along with the 

relative displacement constraints in Eqn. 4-32.  Since the charges of the collectors are the 

same, 21 ˆˆ qq = , the linearized dynamic equations can be simplified as 
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Eqn. 5-26 
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where 

Eqn. 5-27  

 







+−=

−=−=−=

−−=−=+=

==−+−=

12023

122121020

2
131036

2
135

2
131034

1033
2

132
2

131031

ˆ
2

1
ˆ

2

2

ˆ
2

1
ˆ

2

2
                  ˆ

2

2

ˆ
4

2
ˆˆ

1
1    ˆ

2

2
ˆ

2

2
ˆˆ

2

1

ˆˆ
2

3
    ˆ

4

2
ˆ

4

2
ˆˆ

2

1
3

q
L

q
L

b

   q
L

b          q
L

  b         q
L

b

q
L

qq
L

a     q
L

 a          q
L

 qq
L

 a

   qq
L

   a    q
L

       aq
L

qq
L

a

 

 

After obtaining the dynamic equations, the linearized dynamic system is formed, 

and the A  and B  matrices are 

Eqn. 5-28 
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0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

A  = 0 0 0 0 0 0 0 0 0 0 0 1
a 1 a 3 0 a 2 0 0 0 -2 0 0 0 0

a 3 a 4 0 0 -a 5 0 2 0 0 0 0 0

0 0 a 6 0 0 a 2 0 0 0 0 0 0

a 2 0 0 a 1 -a 3 0 0 0 0 0 -2 0

0 -a 5 0 -a 3 a 4 0 0 0 0 2 0 0

0 0 a 2 0 0 a 6 0 0 0 0 0 0   

 

 

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

B  = 0 0 0
b 1 b 0 0

b 1 b 3 b 2

0 0 0
b 1 0 b 0

-b 1 -b 2 -b 3

0 0 0  

 

5.6.2. Stability and Controllability of Earth Orbiting Triangular Formation 

The stability and controllability can be determined again using Matlab by finding 

the eigenvalues of A  and the rank of the controllability matrix.   There exist eigenvalues 

of A  having positive real parts so the equilibrium point is unstable.  In addition, the rank 

of the controllability matrix obtained from Matlab is 8 instead of 12 so it is 

uncontrollable as well.  In physically, this makes sense because: Earth orbiting triangular 

formation is aligned on the xc-yc plane.  There is no way to apply zc forces to move the 

spacecraft so this formation is unstable and uncontrollable.  If the linear system is 
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constrained to maintain in xc-yc direction instead of the xc-yc-zc direction, given that B  is 

an 8×8 matrix which is shown in Eqn. 5-29 and is 8 linearly independent (i.e. rank = 8), 

the linear system is controllable. 

Eqn. 5-29  

 

0 0 0
0 0 0
0 0 0

B  = 0 0 0
b 1 b 0 0

b 1 b 3 b 2

b 1 0 b 0

-b 1 -b 2 -b 3  

 

5.7. Earth Orbiting Seven-satellite Formation 

The Earth Orbiting seven-satellite formation is shown in Figure 3-7 and is 

described in Section 3.1.5.  The equilibrium equations and solutions are presented in 

Section 4.5.   

5.7.1. Linearized Dynamic System 

Eighteen dynamic equations are derived by substituting the relative displacement 

constraint, Eqn. 4-60, into Eqn. 5-20 and the Maple program that was used to create the 

dynamic equations is located in Appendix A.2.  The linear dynamic system is formed.  A  

is a 36×36 matrix, x  is a 36×1 matrix, B  is a 36×7 matrix and u  is a 7×1 matrix.  Both 

the A  and B  matrices are derived from Maple program in Appendix A.4. 
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5.7.2. Stability and Controllability of Earth Orbiting Seven-satellite Formation 

After obtaining the A  and B  matrices from linearized dynamic equations, Matlab 

is used to find the eigenvalues of A  and the rank of controllability matrix.  There exist 

eigenvalues of A  having positive real parts so the equilibrium point is not stable.  When 

finding the rank of controllability matrix using Matlab, a problem occurs.  Rank code in 

Matlab could not find the correct rank because Matlab automatically ignores the row or 

column when it multiples by a tiny number.  However, the rank of the controllability 

matrix is 36 by calculating the controllability matrix.  This implies that the linear 

dynamic system can be controlled.  This is what is expected because all the forces are 

balanced when the satellites are located in the xc-yc-zc plane.   

 

5.8.  Summary 

The concept of stability and controllability are discussed in this section.  The 

equilibrium solutions were obtained to determine if the system is stable or unstable, 

controllable or uncontrollable.  The linearized dynamic system is formed as 

uBxAx +=� .  If A  matrix has all negative real parts of eigenvalues, then the equilibrium 

point is defined as stable.  If A  matrix has positive real parts of eigenvalues, then the 

equilibrium point is defined as unstable.  If the A  matrix has pure imaginary parts of 

eigenvalues then the equilibrium point is undefined.  If the rank of controllability matrix 

is n where the vector is an n × mn matrix, then it is controllable.   
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Three different formations are discussed in this section: the Earth orbiting three-

satellite formation, the Earth orbiting triangular formation, and the Earth orbiting seven-

satellite formation.  The linearized dynamic system is derived.  All cases are unstable.  

Considering controllability, the Earth orbiting three-satellite formation is controlled in the 

xc-axis. The Earth orbiting triangular formation can be controlled only in the xc-yc plane 

whereas the Earth orbiting seven-satellite formation is controllable in all 3 axes.  Future 

work should focus on constructing a control law that can stabilize the formation.  The full 

nonlinear equations should be used if not for the design, then at least for the closed-loop 

stability and performance evaluation.  
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6. Conclusions and Recommendations 

 

6.1.  Conclusions 

This research investigated the Coulomb control concept for swarm satellites 

formations.  Aside from the detailed analytic and numeric solutions found for specific 

cases, the research produced four main conclusions: 

1. Equilibrium (or at least near-equilibrium) rigid static formations were found for 

all cases considered. 

Purely analytic solutions were obtained for the Earth orbiting three, triangular, 

five, and seven spacecraft formations.  Although analytic methods were not successful in 

analyzing the Earth orbiting six-spacecraft planar and libration five-spacecraft rotating 

formations, close numeric solutions were obtained.  Based on this success, it might be 

summarized that most, if not all, formations may demonstrate equilibrium solutions using 

Coulomb control.  No attempts to prove nor dis-prove this statement are made in the 

present work.  

2. Formations with spacing on the orders of ten meters can be maintained with 

spacecraft charged to tens of kilovolts (1 kVm – 26 kVm) in geostationary orbit. 

Assuming the spacecraft radius are r = 1 m, the highest voltage required for 

maintaining the vehicle to stay at equilibrium state is less than 26 kV in the Earth 

orbiting six-spacecraft formation (pentagon shape).  Spacecraft located along the 

x-axis normally required more voltage than the y and z-axis.  
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3. All of the formations studied were unstable but one was found to be controllable.  

A linear dynamic system was formed to determine the stability and controllability.  

If all the eigenvalues of A  matrix have negative real parts, then the formation is 

stable.  Also, if the controllability matrix is of rank n, then it is controllable.  All 

of the formations considered in this research were unstable.  All but one were 

uncontrollable in 3D.  The controllability was proven for all cases. 

4. To ensure 3-D controllability, a 3-D formation must be created. 

A linear formation (the Earth orbiting three-satellite formation) can be controlled 

when constrained such that all three spacecraft are in a line.  A planer formation 

(the Earth orbiting triangular formation) can be controlled only when constrained 

to be a plane.  A 3D formation (the Earth orbiting seven-satellite formation) can 

be controlled in 3D. 

 

6.2. Recommendations for Future Work 

Many questions remain unanswered regarding Coulomb control.  Logical follow-

on work may be: 

• Construct a control law for Coulomb Formations 

Although all formations were proven to be controllable, no attempt was made to 

construct a control law.  The full nonlinear equations are suggested to use for 

close-loop stability and performance evaluation.   

• Evaluate position uncertainty in a formation using Coulomb control 

It seems reasonable that a Coulomb controlled formation should enable precise 

position-keeping, however an analysis was not attempted.  It would be interesting 
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to explore the position errors expected in a Coulomb system and compare them 

with those from a thruster-controlled system. 

• Determine an intelligent way to configure a Coulomb formation based on 

some performance metric rather than trial and error. 

Formations chosen for the present work were loosely based on relevant 

interferometric geometries.  For the most part, however, the formations were 

chosen simply to explore the feasibility and orbital mechanics.  There are perhaps 

better formations which may require less charging and/or be more valuable for a 

specific mission.  It would be helpful to develop some method to determine such 

formations a priori.  

• Investigate the proper integration of a Coulomb control system with 

thruster controls. 

The Coulomb control concept has its greatest benefits in formation situations 

where thruster control has its greatest drawbacks and vice-versa.  It would be 

helpful to develop a combined control scheme where both systems can exploit 

their strengths to provide the greatest mission enhancement.  
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Appendix A 

Maple Program of Dynamic Equations of Satellite Formations 
 

A.1.  Creating Lagrange Equation Program 
 
with(linalg): 
 
ft2sym := proc(fn,sym_ar,ft_ar) 
   local ncols, temp, i; 
  
   temp := fn: 
   ncols := rowdim(sym_ar): 
   for i from 1 to ncols do 
      temp := subs(ft_ar[i,1]=sym_ar[i,1],temp): 
   od; 
  
   temp; 
end; 
 
sym2ft := proc(fn,sym_ar,ft_ar) 
   local ncols, temp, i; 
  
   temp := fn: 
   ncols := rowdim(sym_ar): 
   for i from 1 to ncols do 
      temp := subs(sym_ar[i,1]=ft_ar[i,1],temp): 
   od; 
   temp; 
end; 
 
time_deriv := proc(interm,vars,varsd,varsdd) 
 
  local varsd_t, varsdd_t, temp, d_dt, d_dt_sym; 
 
  varsd_t := map(diff,vars(t),t): 
  varsdd_t := map(diff,varsd_t,t): 
 
  temp := sym2ft(interm,vars,vars(t)): 
  temp := sym2ft(temp,varsd,varsd_t): 
  d_dt := diff(temp,t): 
  d_dt_sym := ft2sym(d_dt,varsdd,varsdd_t): 
  d_dt_sym := ft2sym(d_dt_sym,varsd,varsd_t): 
  d_dt_sym := ft2sym(d_dt_sym,vars,vars(t)): 
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  eval(d_dt_sym): 
end; 
 
time_deriv_vector := proc(invec,vars,varsd,varsdd) 
  local temp, k, i; 
 
  k := nops(convert(invec,list)): 
  temp := array(1..k): 
 
  for i from 1 to k do 
    temp[i] := time_deriv(invec[i],vars,varsd,varsdd): 
  od; 
  evalm(temp): 
end; 
 
 
MakeEQMO := proc(L,vars,deriv_sym,deriv2_sym) 
  
   local ncols, EQ, d_dt, i, temp, vars_dt, vars2_dt; 
  
   ncols := rowdim(deriv_sym); 
print(ncols); 
   EQ:= array(1..ncols): 
   d_dt:= array(1..ncols): 
  
   vars_dt := map(diff,vars(t),t): 
   vars2_dt := map(diff,vars_dt,t): 
  
   for i from 1 to ncols do 
      temp := diff(L,deriv_sym[i,1]): 
      temp := sym2ft(temp,vars,vars(t)): 
      temp := sym2ft(temp,deriv_sym,vars_dt): 
      d_dt[i] := diff(temp,t): 
   od; 
  
   for i from 1 to ncols do 
      EQ[i]:= d_dt[i] - diff(L,vars[i,1]): 
   od; 
  
   for i from 1 to ncols do 
      EQ[i]:= ft2sym(EQ[i],deriv2_sym,vars2_dt): 
      EQ[i]:= ft2sym(EQ[i],deriv_sym,vars_dt): 
      EQ[i]:= ft2sym(EQ[i],vars,vars(t)): 
   od; 
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   EQ; 
end; 
 
MakeEQ := proc(L,vars,deriv_sym,deriv2_sym) 
  
   local ncols, EQ, d_dt, i, temp, vars_dt, vars2_dt; 
  
   ncols := rowdim(deriv_sym); 
print(ncols); 
   EQ:= array(1..ncols): 
   d_dt:= array(1..ncols): 
  
   vars_dt := map(diff,vars(t),t): 
   vars2_dt := map(diff,vars_dt,t): 
  
   for i from 1 to ncols do 
      EQ[i]:=  diff(L,vars[i,1]): 
   od; 
  
   for i from 1 to ncols do 
      EQ[i]:= ft2sym(EQ[i],deriv2_sym,vars2_dt): 
      EQ[i]:= ft2sym(EQ[i],deriv_sym,vars_dt): 
      EQ[i]:= ft2sym(EQ[i],vars,vars(t)): 
   od; 
  
   EQ; 
end; 
 
 

A.2.  Maple Program of Creating Dynamic Equations of Satellite 
Formations  

 
This is a programming to create the dynamic equations of Earth orbiting three-

satellite, five-satellite, six-satellite, and seven-satellite formation.  The program below is 
the program generate dynamic equations of Earth orbiting seven-satellite formation: 

 
# Maple script for calculating the dynamic equations for 6 collector, 
# and one combiner. 
 
 
# Maple Libraries 
with(linalg): 
#(C); 
#readlib(mtaylor); 
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# Custom library for implementing Lagrange’s equations 
read ‘/home/megrad/jchong/files/res-maple/eqmo_util.mpl‘; 
 
# ************** ARRAY and MATRIX INITIALIZATION  
 
# The array "vars" contains a list of the names given to independent  
# variables used to describe the kinematics, and ultimately, the  
# dynamics. Each member of this list is assume to be independent, and 
# a function of time. Any quantity used to describe the position of 
# the payload and is an independent function of time must be in this 
# list. 
vars   := array([ [rr]    , [tht] , 
                  [x1]    , [y1]  , [z1] ,  
                  [x2]    , [y2]  , [z2] , 
                  [x3]    , [y3]  , [z3] , 
                  [x4]    , [y4]  , [z4] , 
                  [x5]    , [y5]  , [z5] , 
                  [x6]    , [y6]  , [z6]  ]): 
 
# The array "varsd" contains the names given to the time derivatives 
# of the quantities in "vars". Although Maple can display time derivatives 
# using a d/dt notation, the ability to let the user assign the 
# names results in more compact dynamic equations, and facilitates 
# their use in automatically generated C code. 
varsd  := array([ [rrd]   , [thtd]  ,  
                  [x1d]    , [y1d]  , [z1d]  , 
                  [x2d]    , [y2d]  , [z2d]  , 
                  [x3d]    , [y3d]  , [z3d]  , 
                  [x4d]    , [y4d]  , [z4d]  , 
                  [x5d]    , [y5d]  , [z5d]  , 
                  [x6d]    , [y6d]  , [z6d]  ]): 
                   
# The array "varsdd" is similar to "varsd", but for the second  
# derivatives of the variables in "vars". You guessed it, the "d" 
# suffix designates a time derivative. 
varsdd := array([ [rrdd]  , [thtdd]  , 
                  [x1dd]    , [y1dd]  , [z1dd]  , 
                  [x2dd]    , [y2dd]  , [z2dd]  , 
                  [x3dd]    , [y3dd]  , [z3dd]  , 
                  [x4dd]    , [y4dd]  , [z4dd]  , 
                  [x5dd]    , [y5dd]  , [z5dd]  , 
                  [x6dd]    , [y6dd]  , [z6dd]  ]): 
                   
# ******************** ENERGY CALCULATION  
# Deriving the differential equations of motion using Lagrange’s equations 
# requires the computation of the kinetic and potential energy of the 
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# payload. This is accomplished by first forming the absolute position vector 
# from the origin of the inertial frame {I} to the payload, represented in 
# inertial coordinates. Although the expression would be more compact using 
# a rotating coordinate system, we are using inertial coordinates and  
# letting Maple perform all the simplifications.  
# 
# After getting position, the absolute velocity is easily computed leading 
# directly to the kinetic energy. Potential energy is computed by taking the 
# the z-component of the position vector. 
 
# *** POSITION VECTORS 
# Form position vectors 
p0 := array([rr, 0, 0]): 
p1 := array([rr+x1, y1, z1]): 
p2 := array([rr+x2, y2, z2]): 
p3 := array([rr+x3, y3, z3]): 
p4 := array([rr+x4, y4, z4]): 
p5 := array([rr+x5, y5, z5]): 
p6 := array([rr+x6, y6, z6]): 
angvel := array([0, 0, thtd]): 
 
p0d := evalm(time_deriv_vector(p0,vars,varsd,varsdd) +  
    crossprod(angvel,p0)): 
p1d := evalm(time_deriv_vector(p1,vars,varsd,varsdd) +  
    crossprod(angvel,p1)): 
p2d := evalm(time_deriv_vector(p2,vars,varsd,varsdd) +  
    crossprod(angvel,p2)): 
p3d := evalm(time_deriv_vector(p3,vars,varsd,varsdd) +  
   crossprod(angvel,p3)): 
p4d := evalm(time_deriv_vector(p4,vars,varsd,varsdd) +  
    crossprod(angvel,p4)): 
p5d := evalm(time_deriv_vector(p5,vars,varsd,varsdd) +  
    crossprod(angvel,p5)): 
p6d := evalm(time_deriv_vector(p6,vars,varsd,varsdd) +  
    crossprod(angvel,p6)): 
     
KE := (Mc*evalm(transpose(p0d)&*p0d) +  
      Ms*evalm(transpose(p1d)&*p1d) + 
      Ms*evalm(transpose(p2d)&*p2d) + 
      Ms*evalm(transpose(p3d)&*p3d) + 
      Ms*evalm(transpose(p4d)&*p4d) + 
      Ms*evalm(transpose(p5d)&*p5d) + 
      Ms*evalm(transpose(p6d)&*p6d) )/2: 
       
KE := simplify(expand(KE)): 
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Peg := -mu*Mc/rr - mu*Ms/sqrt( (rr+x1)^2+y1^2+z1^2 ) - 
                   mu*Ms/sqrt( (rr+x2)^2+y2^2+z2^2 ) - 
                   mu*Ms/sqrt( (rr+x3)^2+y3^2+z3^2 ) - 
                   mu*Ms/sqrt( (rr+x4)^2+y4^2+z4^2 ) - 
                   mu*Ms/sqrt( (rr+x5)^2+y5^2+z5^2 ) - 
                   mu*Ms/sqrt( (rr+x6)^2+y6^2+z6^2 ): 
                    
Peg := simplify(expand(Peg)): 
 
Pec := kk*q0*q1/sqrt(x1^2+y1^2+z1^2) + 
       kk*q0*q2/sqrt(x2^2+y2^2+z2^2) + 
       kk*q0*q3/sqrt(x3^2+y3^2+z3^2) + 
       kk*q0*q4/sqrt(x4^2+y4^2+z4^2) + 
       kk*q0*q5/sqrt(x5^2+y5^2+z5^2) + 
       kk*q0*q6/sqrt(x6^2+y6^2+z6^2) + 
       kk*q1*q2/sqrt( (x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2  ) + 
       kk*q1*q3/sqrt( (x3-x1)^2 + (y3-y1)^2 + (z3-z1)^2  ) + 
       kk*q1*q4/sqrt( (x4-x1)^2 + (y4-y1)^2 + (z4-z1)^2  ) + 
       kk*q1*q5/sqrt( (x5-x1)^2 + (y5-y1)^2 + (z5-z1)^2  ) + 
       kk*q1*q6/sqrt( (x6-x1)^2 + (y6-y1)^2 + (z6-z1)^2  ) + 
       kk*q2*q3/sqrt( (x3-x2)^2 + (y3-y2)^2 + (z3-z2)^2  ) + 
       kk*q2*q4/sqrt( (x4-x2)^2 + (y4-y2)^2 + (z4-z2)^2  ) + 
       kk*q2*q5/sqrt( (x5-x2)^2 + (y5-y2)^2 + (z5-z2)^2  ) + 
       kk*q2*q6/sqrt( (x6-x2)^2 + (y6-y2)^2 + (z6-z2)^2  ) + 
       kk*q3*q4/sqrt( (x4-x3)^2 + (y4-y3)^2 + (z4-z3)^2  ) + 
       kk*q3*q5/sqrt( (x5-x3)^2 + (y5-y3)^2 + (z5-z3)^2  ) + 
       kk*q3*q6/sqrt( (x6-x3)^2 + (y6-y3)^2 + (z6-z3)^2  ) + 
       kk*q4*q5/sqrt( (x5-x4)^2 + (y5-y4)^2 + (z5-z4)^2  ) + 
       kk*q4*q6/sqrt( (x6-x4)^2 + (y6-y4)^2 + (z6-z4)^2  ) + 
       kk*q5*q6/sqrt( (x6-x5)^2 + (y6-y5)^2 + (z6-z5)^2  ) : 
        
Pec := simplify(expand(Pec)): 
 
Lag := KE -  Pec: 
 
# ************ IMPLEMENTATION OF LAGRANGE’S EQUATIONS  
eq := MakeEQMO(Lag,vars,varsd,varsdd): 
 
GenF := MakeEQMO(-Peg,vars,varsd,varsdd): 
 
for i from 1 to 20 do 
  eq[i] := expand(eq[i]): 
  GenF[i] := expand(GenF[i]): 
od: 
 
NewGenF := array(1..20): 
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mu:=rr*rr*rr*thtd*thtd: 
 
for i from 1 to 20 do 
 
  temp1:= mtaylor(GenF[i], 
    [x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6],2): 
  temp2 := simplify(expand(temp1)): 
  NewGenF[i] := expand(temp2/csgn(rr)): 
od;  
 
for i from 1 to 20 do 
  eq[i] := eq[i] + NewGenF[i]: 
od; 
 
x1:=0: 
x2:=0: 
x3:=0: 
x4:=0: 
x5:=-L: 
x6:=L: 
 
y1:=L*sin(phi): 
y2:=-L*cos(phi): 
y3:=-L*sin(phi): 
y4:=L*cos(phi): 
y5:=0: 
y6:=0: 
 
z1:=-L*cos(phi): 
z2:=-L*sin(phi): 
z3:=L*cos(phi): 
z4:=L*sin(phi): 
z5:=0: 
z6:=0: 
 
x1d:=0: 
x2d:=0: 
x3d:=0: 
x4d:=0: 
x5d:=0: 
x6d:=0: 
 
y1d:=L*phid*cos(phi): 
y2d:=L*phid*sin(phi): 
y3d:=-L*phid*cos(phi): 
y4d:=-L*phid*sin(phi): 
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y5d:=0: 
y6d:=0: 
 
z1d:=L*phid*sin(phi): 
z2d:=-L*phid*cos(phi): 
z3d:=-L*phid*sin(phi): 
z4d:=L*phid*cos(phi): 
z5d:=0: 
z6d:=0: 
 
x1dd:=0: 
x2dd:=0: 
x3dd:=0: 
x4dd:=0: 
x5dd:=0: 
x6dd:=0: 
 
y1dd:=L*phidd*cos(phi) - L*phid*phid*sin(phi): 
y2dd:=L*phidd*sin(phi) + L*phid*phid*cos(phi): 
y3dd:=-L*phidd*cos(phi) + L*phid*phid*sin(phi): 
y4dd:=-L*phidd*sin(phi) - L*phid*phid*cos(phi): 
y5dd:=0: 
y6dd:=0: 
 
z1dd:=L*phidd*sin(phi) + L*phid*phid*cos(phi): 
z2dd:=-L*phidd*cos(phi) + L*phid*phid*sin(phi): 
z3dd:=-L*phidd*sin(phi) - L*phid*phid*cos(phi): 
z4dd:=L*phidd*cos(phi) - L*phid*phid*sin(phi): 
z5dd:=0: 
z6dd:=0: 
 
rrd :=0: 
rrdd := 0: 
thtdd := 0: 
 
# Constant equilibrium setting: 
u1:=kk/L^2: 
u2:=sqrt(2)*kk/(2*L^2): 
u3:=sqrt(4)*kk/(8*L^2): 
c1:=Ms*thtd^2*L: 
 
# Equilibrium Solutions: 
q3:=q1: 
q4:=q2: 
q6:=q5: 
q2:=sqrt(12*c1*(u3-u2)/(u2-u3)^2): 
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q1:=(-(u2-u3)*q2+sqrt((u2-u3)^2*q2^2+4*(u3-u2)*c1))/(2*(u3-u2)): 
q5:=(-(u2-u3)*q2+sqrt((u2-u3)^2*q2^2-12*c1*(u3-u2)))/(2*(u3-u2)): 
q0:=(-u2*q5-u3*q2-u2*q1)/u1: 
 
phi:=0: 
phid:=0: 
phidd:=0: 
 
 

A.3.  Maple Program of Libration Point Five-satellite Formation 
 
# ************************* LIBRARIES  
# Maple Libraries 
with(linalg): 
#(C); 
#readlib(mtaylor); 
 
# Custom library for implementing Lagrange’s equations 
read ‘/home/megrad/jchong/files/res-maple/eqmo_util.mpl‘; 
 
# ************** ARRAY and MATRIX INITIALIZATION  
 
# The array "vars" contains a list of the names given to independent  
# variables used to describe the kinematics, and ultimately, the  
# dynamics. Each member of this list is assume to be independent, and 
# a function of time. Any quantity used to describe the position of 
# the payload and is an independent function of time must be in this 
# list. 
vars   := array([ [x0]    , [y0]  , [z0] ,  
                  [x1]    , [y1]  , [z1] ,  
                  [x2]    , [y2]  , [z2] , 
                  [x3]    , [y3]  , [z3] , 
                  [x4]    , [y4]  , [z4]  ]): 
 
# The array "varsd" contains the names given to the time derivatives 
# of the quantities in "vars". Although Maple can display time derivatives 
# using a d/dt notation, the ability to let the user assign the 
# names results in more compact dynamic equations, and facilitates 
# their use in automatically generated C code. 
varsd  := array([ [x0d]    , [y0d]  , [z0d]  , 
                  [x1d]    , [y1d]  , [z1d]  , 
                  [x2d]    , [y2d]  , [z2d]  , 
                  [x3d]    , [y3d]  , [z3d]  , 
                  [x4d]    , [y4d]  , [z4d]  ]): 
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# The array "varsdd" is similar to "varsd", but for the second  
# derivatives of the variables in "vars". You guessed it, the "d" 
# suffix designates a time derivative. 
varsdd := array([ [x0dd]    , [y0dd]  , [z0dd]  , 
                  [x1dd]    , [y1dd]  , [z1dd]  , 
                  [x2dd]    , [y2dd]  , [z2dd]  , 
                  [x3dd]    , [y3dd]  , [z3dd]  , 
                  [x4dd]    , [y4dd]  , [z4dd]  ]): 
                   
# ******************** ENERGY CALCULATION  
# Deriving the differential equations of motion using Lagrange’s equations 
# requires the computation of the kinetic and potential energy of the 
# payload. This is accomplished by first forming the absolute position vector 
# from the origin of the inertial frame {I} to the payload, represented in 
# inertial coordinates. Although the expression would be more compact using 
# a rotating coordinate system, we are using inertial coordinates and  
# letting Maple perform all the simplifications.  
# 
# After getting position, the absolute velocity is easily computed leading 
# directly to the kinetic energy. Potential energy is computed by taking the 
# the z-component of the position vector. 
 
# *** POSITION VECTORS 
# Form position vectors 
p0 := array([x0, y0, z0]): 
p1 := array([x1, y1, z1]): 
p2 := array([x2, y2, z2]): 
p3 := array([x3, y3, z3]): 
p4 := array([x4, y4, z4]): 
 
angvel := array([0, 0, thtd]): 
 
p0d := evalm(time_deriv_vector(p0,vars,varsd,varsdd) +  
    crossprod(angvel,p0)): 
p1d := evalm(time_deriv_vector(p1,vars,varsd,varsdd) +  
    crossprod(angvel,p1)): 
p2d := evalm(time_deriv_vector(p2,vars,varsd,varsdd) +  
    crossprod(angvel,p2)): 
p3d := evalm(time_deriv_vector(p3,vars,varsd,varsdd) +  
   crossprod(angvel,p3)): 
p4d := evalm(time_deriv_vector(p4,vars,varsd,varsdd) +  
    crossprod(angvel,p4)): 
     
KE := (M0*evalm(transpose(p0d)&*p0d) +  
      M1*evalm(transpose(p1d)&*p1d) + 
      M2*evalm(transpose(p2d)&*p2d) + 



 119

      M3*evalm(transpose(p3d)&*p3d) + 
      M4*evalm(transpose(p4d)&*p4d) )/2: 
       
KE := simplify(expand(KE)): 
 
Pec := kk*q0*q1/sqrt( (x1-x0)^2+(y1-y0)^2+(z1-z0)^2) + 
       kk*q0*q2/sqrt( (x2-x0)^2+(y2-y0)^2+(z2-z0)^2) + 
       kk*q0*q3/sqrt( (x3-x0)^2+(y3-y0)^2+(z3-z0)^2) + 
       kk*q0*q4/sqrt( (x4-x0)^2+(y4-y0)^2+(z4-z0)^2) + 
       kk*q1*q2/sqrt( (x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2  ) + 
       kk*q1*q3/sqrt( (x3-x1)^2 + (y3-y1)^2 + (z3-z1)^2  ) + 
       kk*q1*q4/sqrt( (x4-x1)^2 + (y4-y1)^2 + (z4-z1)^2  ) + 
       kk*q2*q3/sqrt( (x3-x2)^2 + (y3-y2)^2 + (z3-z2)^2  ) + 
       kk*q2*q4/sqrt( (x4-x2)^2 + (y4-y2)^2 + (z4-z2)^2  ) + 
       kk*q3*q4/sqrt( (x4-x3)^2 + (y4-y3)^2 + (z4-z3)^2  ): 
        
Pec := simplify(expand(Pec)): 
 
Lag:= KE - Pec: 
# ************ IMPLEMENTATION OF LAGRANGE’S EQUATIONS  
eq := MakeEQMO(Lag,vars,varsd,varsdd): 
 
 
 
for i from 1 to 15 do 
  eq[i] := expand(eq[i]): 
od: 
 
x0:=0: 
y0:=0: 
z0:=0: 
 
x0d:=0: 
x1d:=0: 
x2d:=0: 
x3d:=0: 
x4d:=0: 
 
y0d:=0: 
y1d:=L*phid*cos(phi): 
y2d:=L*phid*sin(phi): 
y3d:=-L*phid*cos(phi): 
y4d:=-L*phid*sin(phi): 
 
z0d:=0: 
z1d:=L*phid*sin(phi): 
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z2d:=-L*phid*cos(phi): 
z3d:=-L*phid*sin(phi): 
z4d:=L*phid*cos(phi): 
 
x0dd:=0: 
x1dd:=0: 
x2dd:=0: 
x3dd:=0: 
x4dd:=0: 
 
y0dd:=0: 
y1dd:=L*phidd*cos(phi) - L*phid*phid*sin(phi): 
y2dd:=L*phidd*sin(phi) + L*phid*phid*cos(phi): 
y3dd:=-L*phidd*cos(phi) + L*phid*phid*sin(phi): 
y4dd:=-L*phidd*sin(phi) - L*phid*phid*cos(phi): 
 
z0dd:=0: 
z1dd:=L*phidd*sin(phi) + L*phid*phid*cos(phi): 
z2dd:=-L*phidd*cos(phi) + L*phid*phid*sin(phi): 
z3dd:=-L*phidd*sin(phi) - L*phid*phid*cos(phi): 
z4dd:=L*phidd*cos(phi) - L*phid*phid*sin(phi): 
 
rrd :=0: 
rrdd := 0: 
thtdd := 0: 
 
phi:=0: 
phid:=0: 
phidd:=0: 
 
x1:=L1: 
x2:=L1+L2: 
x3:=-L1: 
x4:=-L1-L2: 
 
y0:=0: 
y1:=0: 
y2:=0: 
y3:=0: 
y4:=0: 
 
 
z0:=0: 
z1:=0: 
z2:=0: 
z3:=0: 



 121

z4:=0: 
 
q3:=q1: 
q4:=q2: 
kk := 8.99e9: 
thtd:=0.01*Pi/3600: 
M0:=150: 
M1:=150: 
M2:=130: 
M3:=150: 
M4:=130: 
 
L1:=12.5: 
L2:=25: 
q0:=-6.03227402380943e-08: 
q1:= -1e-07: 
q2:= 1.99e-07: 
q3:=-4.11441709029563e-08: 
q4:=1.672751600554e-08: 
 

A.4.  Program for Creating Stability Linearize Equation of Satellite 
Formations 

 
This is an example of stability program of Earth orbiting seven-satellite 

formation: 
 
# ************************* LIBRARIES  
# Maple Libraries 
with(linalg): 
#(C); 
#readlib(mtaylor); 
 
# Custom library for implementing Lagrange’s equations 
read ‘/home/megrad/jchong/files/res-maple/eqmo_util.mpl‘; 
 
# ************** ARRAY and MATRIX INITIALIZATION  
 
# The array "vars" contains a list of the names given to independent  
# variables used to describe the kinematics, and ultimately, the  
# dynamics. Each member of this list is assume to be independent, and 
# a function of time. Any quantity used to describe the position of 
# the payload and is an independent function of time must be in this 
# list. 
vars   := array([ [rr]    , [tht] , 
                  [x1]    , [y1]  , [z1] ,  
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                  [x2]    , [y2]  , [z2] , 
                  [x3]    , [y3]  , [z3] , 
                  [x4]    , [y4]  , [z4] , 
                  [x5]    , [y5]  , [z5] , 
                  [x6]    , [y6]  , [z6]  ]): 
 
# The array "varsd" contains the names given to the time derivatives 
# of the quantities in "vars". Although Maple can display time derivatives 
# using a d/dt notation, the ability to let the user assign the 
# names results in more compact dynamic equations, and facilitates 
# their use in automatically generated C code. 
varsd  := array([ [rrd]   , [thtd]  ,  
                  [x1d]    , [y1d]  , [z1d]  , 
                  [x2d]    , [y2d]  , [z2d]  , 
                  [x3d]    , [y3d]  , [z3d]  , 
                  [x4d]    , [y4d]  , [z4d]  , 
                  [x5d]    , [y5d]  , [z5d]  , 
                  [x6d]    , [y6d]  , [z6d]  ]): 
                   
# The array "varsdd" is similar to "varsd", but for the second  
# derivatives of the variables in "vars". You guessed it, the "d" 
# suffix designates a time derivative. 
varsdd := array([ [rrdd]  , [thtdd]  , 
                  [x1dd]    , [y1dd]  , [z1dd]  , 
                  [x2dd]    , [y2dd]  , [z2dd]  , 
                  [x3dd]    , [y3dd]  , [z3dd]  , 
                  [x4dd]    , [y4dd]  , [z4dd]  , 
                  [x5dd]    , [y5dd]  , [z5dd]  , 
                  [x6dd]    , [y6dd]  , [z6dd]  ]): 
                   
# ******************** ENERGY CALCULATION  
# Deriving the differential equations of motion using Lagrange’s equations 
# requires the computation of the kinetic and potential energy of the 
# payload. This is accomplished by first forming the absolute position vector 
# from the origin of the inertial frame {I} to the payload, represented in 
# inertial coordinates. Although the expression would be more compact using 
# a rotating coordinate system, we are using inertial coordinates and  
# letting Maple perform all the simplifications.  
# After getting position, the absolute velocity is easily computed leading 
# directly to the kinetic energy. Potential energy is computed by taking the 
# the z-component of the position vector. 
 
# *** POSITION VECTORS 
# Form position vectors 
p0 := array([rr, 0, 0]): 
p1 := array([rr+x1, y1, z1]): 
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p2 := array([rr+x2, y2, z2]): 
p3 := array([rr+x3, y3, z3]): 
p4 := array([rr+x4, y4, z4]): 
p5 := array([rr+x5, y5, z5]): 
p6 := array([rr+x6, y6, z6]): 
angvel := array([0, 0, thtd]): 
 
p0d := evalm(time_deriv_vector(p0,vars,varsd,varsdd) +  
    crossprod(angvel,p0)): 
p1d := evalm(time_deriv_vector(p1,vars,varsd,varsdd) +  
    crossprod(angvel,p1)): 
p2d := evalm(time_deriv_vector(p2,vars,varsd,varsdd) +  
    crossprod(angvel,p2)): 
p3d := evalm(time_deriv_vector(p3,vars,varsd,varsdd) +  
   crossprod(angvel,p3)): 
p4d := evalm(time_deriv_vector(p4,vars,varsd,varsdd) +  
    crossprod(angvel,p4)): 
p5d := evalm(time_deriv_vector(p5,vars,varsd,varsdd) +  
    crossprod(angvel,p5)): 
p6d := evalm(time_deriv_vector(p6,vars,varsd,varsdd) +  
    crossprod(angvel,p6)): 
     
KE := (Mc*evalm(transpose(p0d)&*p0d) +  
      Ms*evalm(transpose(p1d)&*p1d) + 
      Ms*evalm(transpose(p2d)&*p2d) + 
      Ms*evalm(transpose(p3d)&*p3d) + 
      Ms*evalm(transpose(p4d)&*p4d) + 
      Ms*evalm(transpose(p5d)&*p5d) + 
      Ms*evalm(transpose(p6d)&*p6d) )/2: 
       
KE := simplify(expand(KE)): 
 
Peg := -mu*Mc/rr - mu*Ms/sqrt( (rr+x1)^2+y1^2+z1^2 ) - 
                   mu*Ms/sqrt( (rr+x2)^2+y2^2+z2^2 ) - 
                   mu*Ms/sqrt( (rr+x3)^2+y3^2+z3^2 ) - 
                   mu*Ms/sqrt( (rr+x4)^2+y4^2+z4^2 ) - 
                   mu*Ms/sqrt( (rr+x5)^2+y5^2+z5^2 ) - 
                   mu*Ms/sqrt( (rr+x6)^2+y6^2+z6^2 ): 
                    
Peg := simplify(expand(Peg)): 
 
Pec := kk*q0*q1/sqrt(x1^2+y1^2+z1^2) + 
       kk*q0*q2/sqrt(x2^2+y2^2+z2^2) + 
       kk*q0*q3/sqrt(x3^2+y3^2+z3^2) + 
       kk*q0*q4/sqrt(x4^2+y4^2+z4^2) + 
       kk*q0*q5/sqrt(x5^2+y5^2+z5^2) + 
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       kk*q0*q6/sqrt(x6^2+y6^2+z6^2) + 
       kk*q1*q2/sqrt( (x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2  ) + 
       kk*q1*q3/sqrt( (x3-x1)^2 + (y3-y1)^2 + (z3-z1)^2  ) + 
       kk*q1*q4/sqrt( (x4-x1)^2 + (y4-y1)^2 + (z4-z1)^2  ) + 
       kk*q1*q5/sqrt( (x5-x1)^2 + (y5-y1)^2 + (z5-z1)^2  ) + 
       kk*q1*q6/sqrt( (x6-x1)^2 + (y6-y1)^2 + (z6-z1)^2  ) + 
       kk*q2*q3/sqrt( (x3-x2)^2 + (y3-y2)^2 + (z3-z2)^2  ) + 
       kk*q2*q4/sqrt( (x4-x2)^2 + (y4-y2)^2 + (z4-z2)^2  ) + 
       kk*q2*q5/sqrt( (x5-x2)^2 + (y5-y2)^2 + (z5-z2)^2  ) + 
       kk*q2*q6/sqrt( (x6-x2)^2 + (y6-y2)^2 + (z6-z2)^2  ) + 
       kk*q3*q4/sqrt( (x4-x3)^2 + (y4-y3)^2 + (z4-z3)^2  ) + 
       kk*q3*q5/sqrt( (x5-x3)^2 + (y5-y3)^2 + (z5-z3)^2  ) + 
       kk*q3*q6/sqrt( (x6-x3)^2 + (y6-y3)^2 + (z6-z3)^2  ) + 
       kk*q4*q5/sqrt( (x5-x4)^2 + (y5-y4)^2 + (z5-z4)^2  ) + 
       kk*q4*q6/sqrt( (x6-x4)^2 + (y6-y4)^2 + (z6-z4)^2  ) + 
       kk*q5*q6/sqrt( (x6-x5)^2 + (y6-y5)^2 + (z6-z5)^2  ) : 
        
Pec := simplify(expand(Pec)): 
 
# ************ IMPLEMENTATION OF LAGRANGE’S EQUATIONS  
eq := MakeEQMO(KE,vars,varsd,varsdd): 
 
GenF := MakeEQMO(-Peg,vars,varsd,varsdd): 
GenF1 := MakeEQMO(-Pec,vars,varsd,varsdd): 
 
for i from 1 to 20 do 
  eq[i] := expand(eq[i]): 
  GenF[i] := expand(GenF[i]): 
  GenF1[i] := expand(GenF1[i]): 
   
  eq[i] := subs({x1=dx1,   y1=dy1,   z1=-L+dz1, 
                 x2=dx2,   y2=-L+dy2,z2=dz2, 
                 x3=dx3,   y3=dy3,   z3=L+dz3, 
                 x4=dx4,   y4=L+dy4, z4=dz4, 
                 x5=-L+dx5,y5=dy5,   z5=dz5, 
                 x6=L+dx6, y6=dy6,   z6=dz6},eq[i]): 
 
  GenF1[i] := subs({x1=dx1,   y1=dy1,   z1=-L+dz1, 
                    x2=dx2,   y2=-L+dy2,z2=dz2, 
                    x3=dx3,   y3=dy3,   z3=L+dz3, 
                    x4=dx4,   y4=L+dy4, z4=dz4, 
                    x5=-L+dx5,y5=dy5,   z5=dz5, 
                    x6=L+dx6, y6=dy6,   z6=dz6, 
                    q0=q0b+dq0,q1=q1b+dq1,q2=q2b+dq2, 
                    q3=q3b+dq3,q4=q4b+dq4,q5=q5b+dq5, 
                    q6=q6b+dq6},GenF1[i]): 
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od: 
 
NewGenF := array(1..20): 
NewGenF1 := array(1..20): 
mu:=rr*rr*rr*thtd*thtd: 
 
for i from 1 to 20 do 
 
  temp1:= mtaylor(GenF[i], 
    [x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6],2): 
  temp2 := simplify(expand(temp1)): 
  NewGenF[i] := expand(temp2/csgn(rr)): 
 
  NewGenF[i] := subs({x1=dx1,   y1=dy1,   z1=-L+dz1, 
                      x2=dx2,   y2=-L+dy2,z2=dz2, 
                      x3=dx3,   y3=dy3,   z3=L+dz3, 
                      x4=dx4,   y4=L+dy4, z4=dz4, 
                      x5=-L+dx5,y5=dy5,   z5=dz5, 
                      x6=L+dx6, y6=dy6,   z6=dz6},NewGenF[i]): 
 
  temp3:= mtaylor(GenF1[i], 
    [dx1,dy1,dz1,dx2,dy2,dz2,dx3,dy3,dz3,dx4,dy4,dz4,dx5,dy5,dz5,dx6,dy6,dz6, 
     dq0,dq1,dq2,dq3,dq4,dq5,dq6],2): 
  temp4 := simplify(expand(temp3)): 
  NewGenF1[i] := expand(temp4/csgn(rr)): 
od;  
 
for i from 1 to 20 do 
  eq[i] := eq[i] + NewGenF[i] + NewGenF1[i]: 
od; 
rrd :=0: 
rrdd := 0: 
thtdd := 0: 
phi:=0: 
phid:=0: 
phidd:=0: 
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