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Abstract: Annular field reversed configuration (AFRC) devices form annular plasma
toroids between a pair of concentric cylindrical coils. This plasmoid remains detached
from the external magnetic field so that it can be ejected from the coils, making AFRCs vi-
able pulsed inductive plasma accelerators. Though numerous formation studies on AFRCs
are available, no successful translation studies have been published. Michigan Technolog-
ical University, in conjunction with the Air Force Research Laboratory, is investigating
the translation of AFRCs as pulsed inductive plasma accelerators. The first step in this
investigation is to develop an annular electromagnetic launcher model to study the basic
translation characteristics of the device. The launcher model treats the plasmoid as a
rigid conducting slug, accelerated out of the coils by a Lorentz force. It predicts coil and
plasmoid currents, plasmoid trajectories, and acceleration efficiencies for various input con-
ditions. The model has been optimized for peak acceleration efficiency using a combination
of non-dimensional analysis, genetic algorithms, and gradient-based numerical optimization
routines. A description of the model, explanation of the numerical optimization techniques,
and preliminary results from the model are presented in this paper.

Nomenclature

η∗accel = Acceleration efficiency [non-dimensional]
ηaccel = Acceleration efficiency
C1 = Circuit capacitance
I∗1 = Outer coil current [non-dimensional]
I∗2 = Inner coil current [non-dimensional]
I∗3 = Plasmoid current [non-dimensional]
I0 = Coil circuit current
I1 = Outer coil circuit current
I2 = Inner coil circuit current
I3 = Plasma circuit current
k13 = Outer coil-plasmoid coupling coefficient
k23 = Inner coil-plasmoid coupling coefficient
L1 = Outer coil inductance
L2 = Inner coil inductance
L3 = Plasmoid inductance
Le = External circuit inductance
∗Ph.D. Candidate, Michigan Technological University, csniemel@mtu.edu
†Associate Professor, Michigan Technological University, lbking@mtu.edu

Distribution A: Public release; distribution unlimited.

1
The 31st International Electric Propulsion Conference, University of Michigan, USA

September 20-24, 2009



Le1 = Outer coil circuit external inductance
Le2 = Inner coil circuit external inductance
m = Plasmoid mass
M13 = Mutual inductance (Outer coil-plasmoid)
M23 = Mutual inductance (Inner coil-plasmoid)
ni = Plasma density
n13 = Exponential power (Outer coil-plasmoid)
n23 = Exponential power (Inner coil-plasmoid)
R1 = Outer coil circuit external resistance
R2 = Inner coil circuit external resistance
R3 = Plasmoid resistance
Re = External circuit resistance
t = Time
t∗ = Time [non-dimensional]
Te = Electron temperature [eV]
u∗z = Plasmoid velocity [non-dimensional]
u∗f = Final plasmoid velocity [non-dimensional]
uf = Final plasmoid velocity
uz = Plasmoid velocity
V ∗c = Capacitor voltage [non-dimensional]
V0 = Capacitor charging voltage
Vc = Capacitor voltage
z = Plasmoid position
z∗ = Plasmoid position [non-dimensional]
z13 = Coupling scale length (Outer coil-plasmoid)
z23 = Coupling scale length (Inner coil-plasmoid)
zs13 = Profile z shift (Outer coil-plasmoid)
zs23 = Profile z shift (Inner coil-plasmoid)

I. Introduction

Annular field reversed configuration (AFRC) devices offer significant potential as high power electric
propulsion technology. They form robust, high-energy density compact plasma toroids at relatively

low energies (∼250 J). These plasmoids have a completely self-contained magnetic field structure which
allows them to be expelled from their formation chamber at high velocity, similar to the pulsed inductive
thruster1(PIT) and conical theta pinch thruster.2 Michigan Technological University (MTU), in conjunction
with the Air Force Research Laboratory (AFRL), is constructing an experiment to study the behavior of
translating AFRCs. This experiment, the TeXOCOT, is a next-generation device of AFRL/University of
Michigan’s XOCOT experiment3 and AFRL’s XOCOT-T experiment.4

The TeXOCOT program intends to measure the translation properties of an AFRC plasmoid, including
its velocity, momentum, and acceleration efficiency. A new AFRC translation experiment for taking these
measurements will be constructed in MTU’s Ion Space Propulsion Lab. This experiment is being designed
with the aid of an annular electromagnetic launcher model to identify a set of operating conditions, such as
cone angle, circuit charging voltage, plasmoid mass, etc., for which translation of the plasmoid is possible
and acceleration efficiency of the plasmoid is maximized. This paper presents the annular electromagnetic
launcher model and optimization techniques used on the model to find the peak acceleration efficiency of
an AFRC plasmoid. Preliminary findings from these methods indicate promising results, though further
refinement is necessary.

II. Background: Annular Field Reversed Configurations

An annular field reversed configuration is a compact plasma toroid formed in the annular region between
two coaxial coils, as shown in Figure 1. The purely poloidal B-field is supported by an induced toroidal
(azimuthal) current. This diamagnetic current forms a closed magnetic field to confine the plasma. AFRCs
were first proposed by Phillips5 as a low-voltage formation method for fusion plasma, but subsequent research
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at the University of Washington on the Coaxial Slow Source (CSS)6 showed temperatures and densities in
an AFRC are insufficient for fusion.

Figure 1. AFRCs are formed inductively be-
tween two coaxial coils as shown.

Formation of AFRCs remains an empirical process which
is not well-understood, despite numerous studies.3,7,8 The
plasma is turbulent fluid, subject to complex magnetohydro-
dynamic instabilities requiring numerical plasma studies to re-
solve. Despite the limitation, the formation of AFRCs can be
illustrated by considering basic electromagnetic principles.

Annular FRCs can either be formed with the coils connected
in parallel or the coils operating independently from one an-
other. The parallel formation method will be the subject of
this work; a dissertation by Smith9 contains a detailed descrip-
tion of the independent coil mode. Figure 2 displays the circuit
configuration, typical current waveforms, and the formation se-
quence for the parallel coil operation. The channel between the
coils is filled with an inert gas (Step 1), which is then partially
ionized or pre-ionized (Step 2). Upon completion of the pre-
ionization stage, the capacitors are discharged into the coils
adding oppositely directed magnetic fields in the annulus be-
tween the coils (Step 3). As a consequence of Faraday’s Law, the rising currents in the coils cause a current
to develop in the plasma, opposing this change in field (Step 4). This current is diamagnetic so that it
creates a closed B-field topology to confine the plasma. Further increasing the currents in the coils causes
the current in the plasma to increase, ionizing and heating it. External magnetic pressure from both coils
balances with the plasma pressure to help keep the toroid well-centered in the annulus. Confinement of the
plasma is improved if oppositely directed field lines near the coil ends are allowed to tear and reconnect,
though evidence of this remains unclear.

Figure 2. Parallel coil configuration showing circuit diagrams, schematics, and typical current waveforms. The
formation sequence starts with a neutral backfill (1) followed by a pre-ionization of the fill gas (2). Current is
pulsed through the coils (3) and the plasma current develops to oppose the change in B-field, resulting in a
closed confinement (4).

Successful translation studies on AFRCs are not readily available. The XOCOT-T experiment attempted
to translate the plasmoid, however evidence of translation was not apparent. In principle, AFRCs can be
translated the same way as their close relative, the FRC.10 Traditional FRCs do not use a center coil and
operate on much faster (∼5 µs) timescales. Most FRC devices translate the plasmoid using a conical outer
coil in place of the traditional cylindrical coil. This creates a small radial magnetic field component which
crosses with the azimuthal plasma current to create an axially directed Lorentz force. This method has
been used successfully in the FRX/C-T,11 the MTF experiment,12 and was the translation method for the
XOCOT-T.4

The Lorentz force acting on the plasmoid must be sufficiently large to overcome the plasmoid inertia and
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it must accelerate the plasmoid in time comparable to the lifetime of the configuration. For AFRCs, the
configuration typically lasts only about 20-30 µs.6 Once translation of the plasmoid is initiated, the plasmoid
can only be expelled from the formation chamber if it is completely detached from the magnetic field of the
coil. Since the magnetic field null is along the centerline of the annulus in the parallel coil configuration, the
plasmoid should always remain detached from the coils.

III. Annular Electromagnetic Launcher Model

Dynamic circuit models are a popular method for predicting the translation physics of a pulsed inductive
plasmoid accelerators1,13,14,15 and electromagnetic launchers.16 These models couple the circuit equations
with Newton’s law, producing a set of simultaneous equations to describe the coupled electrical and dynamic
behavior of the system. In short, they simplify the device down to a collection of circuit elements which can
be solved using first order ordinary differential equations rather than computationally intense particle codes.

Similar to other models, the annular electromagnetic launcher model treats the plasmoid as a rigid
conducting slug accelerated by a Lorentz force. This simplification masks the AFRC formation where the
plasmoid is changing in shape as external magnetic field pressure balances with internal plasma pressure.
Instead, it assumes that equilibrium is reached and the plasmoid maintains a constant shape. The model
also neglects the expansion that occurs when the plasmoid leaves the coils, since this expansion for an AFRC
has not been investigated.

The AFRC plasmoid forms inductively and is magnetically coupled to the coils through mutual induc-
tance, which decays as it leaves the coils. The mutual inductance controls the Lorentz force by determining
the interaction of the plasma current and the coil current. The currents can be calculated using circuit
diagrams. Figure 3 provides a pictorial overview of the annular electromagnetic launcher model, operating
in the parallel coil mode.

Figure 3. Schematic of the annular electromagnetic launcher model. The plasmoid is depicted with circuit
elements L3 and R3, magnetically coupled to the coils through M13 and M23.

The equations of motion for the plasmoid can be derived by calculating the Lorentz force from JxB,
but this requires solving several intense integrals. A much easier and equivalent description can be found
from conservation of energy, considering how the energy of the system changes as the plasmoid travels out
of the coils. Magnetic field energy will change as the mutual inductance changes. This change in magnetic
field energy can be related to Newton’s 2nd Law through the work-kinetic energy theorem (Fz = −δU/δz),
giving:

m
duz

dt
= −dM13

dz
I1I3 −

dM23

dz
I2I3 (1)

where

uz =
dz

dt
(2)

In this model, position of the plasmoid z is tracked with regard to the trailing edge and z = 0 occurs at
the small cone end of the coils. Computing I1, I2, and I3 requires a circuit analysis of the system, yielding
the following equations:
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VC(t) = Le
dI0
dt

+ReI0 + (L1 + Le1)
dI1
dt

+R1I1 − I3
dM13

dz
uz −M13

dI3
dt

(3)

I0 = I1 + I2 (4)

0 = (L1 + Le1)
dI1
dt

+R1I1 + (M23 −M13)
dI3
dt

+
(
dM23

dz
− dM13

dz

)
uzI3

− (L2 + Le2)
dI2
dt
−R2I2 (5)

0 = R3I3 + L3
dI3
dt
−M13

dI1
dt
− I1

dM13

dz
uz − I2

dM23

dz
uz −M23

dI2
dt

(6)

dVC

dt
= − I0

C1
(7)

The time derivatives of M13 and M23 in Equations 3, 5, and 6 have been separated into a positional
derivative and velocity using the chain rule. Their profiles M13(z) and M23(z) as well as the coil and
plasmoid inductances L1, L2, and L3 are determined from the coil and plasmoid geometry. Given the coil
radii, lengths, cone angle, and plasmoid geometry, the mutual inductance profiles M13(z) and M23(z) and L1,
L2, L3 can be calculated using analytical equations, experimental methods, or electromagnetic field solvers.
As multiple authors have discovered1,14,17 , the M(z) profile satisfies an exponential distribution, similar to:

M(z) = k0

√
LpLc exp

(
−
(
|z − zshift|
zscale

)n)
(8)

where k0 is the coupling coefficient, Lp and Lc are the plasmoid and coil inductances (L3 and L1 or L2),
zscale is the coupling scale length, n is the exponential power term, and zshift is the location of maximum
M(z). The difference in geometry between the outer coil-plasmoid combination and the inner coil-plasmoid
combination will results in different coupling for both systems, meaning that for each geometry combination,
the coefficients k0, zscale, zshift, n will have unique values (k13, k23, z13, z23, zs13, zs23, n13, n23). It has
been found that for large cone angles (greater than 10 ◦), n approaches 1 and zshift is zero. For small cone
angles, n and zshift increase with decreasing cone angle.

Plasmoid resistance R3 and plasmoid mass m can be estimated by assuming a fully ionized plasma with
uniform properties of density ni and temperature Te. Resistivity then arises as a result of Coloumb collisions
of the current carrying electrons with stationary ions. Spitzer18 reports this resistivity for a diamagnetic
plasma (like that in an AFRC) in terms of the ion charge number Z, the electron temperature (in eV) Te,
and the Coloumb logarithm ln Λ:

ρSpitzer = 1.03× 10−4Z ln Λ

T
3/2
e

(9)

For an AFRC, ln Λ of 12-15 can be used. Using the estimated resistivity, plasma resistance can be
calculated from R = ρl/A, where l is the plasmoid length and A is the cross sectional area. The plasmoid
mass, using the assumption of a uniform density, is then estimated as: m = niVMm/NA, where V is the
plasmoid volume, Mm is the molar mass of the plasmoid gas, NA is Avogadro’s number.

Acceleration efficiency of the plasmoid can be defined as the final plasmoid kinetic energy compared to
the energy initially stored in the capacitor bank:

ηaccel =
mu2

f

C1V 2
0

(10)
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In this work, acceleration efficiency is the figure of merit; optimization of the model will focus on finding
its maximum.

The launcher model is an initial value problem, requiring the values for I1, I2, I3, Vc, uz, and z to be
specified at t = 0. These 6 initial conditions, combined with the 7 independent circuit elements (C1, Le,
Re, Le1, Le2, R1, R2), 4 coil geometry parameters (outer coil radius, outer coil cone angle, inner coil radius,
coil length), 2 plasma geometry parameters (height, width), and 2 plasma properties (ni, Te), require that
21 inputs be specified for the model. This large parameter set takes 5 minutes to solve on a single-core
processor, with the bulk of the time consumed calculating M13(z) and M23(z).

IV. Methodology

The long computation time and large number of inputs make optimization of the annular electromagnetic
launcher model challenging. Reduction of the computational overhead can be achieved by removing the
geometry dependence from the model and optimizing L1, L2, L3, M13(z), and M23(z) independently. When
these optimal parameters are found, a coil and plasmoid geometry can be fit to them. This method, however,
does not ensure that the optimal L1, L2, L3, M13(z), and M23(z) can produce a valid geometrical solution.
To increase the likelihood of a valid output, the model equations can be non-dimensionalized so that scaling
relations between parameters are developed. Optimization of the scaling relations results in generalized
solutions to which may satisfy several geometries. Also, if the constraints on the output of the optimization
routine are relaxed so that it locates several acceptable extrema rather than producing a single output, the
chance of finding a valid geometrical solution is further increased.

These ideas were implemented in this work. First, the model equations in Section III were non-
dimensionalized to put the solutions in terms of generalized scaling relations. This also brought the solution
time for a single set of parameters down to a few seconds. Next, the non-dimensional equations were opti-
mized for peak acceleration efficiency using a genetic algorithm. The genetic algorithm found sets of scaling
relations with high efficiencies, greater than a predefined limit. These sets were then sorted according to
efficiency and the best ones were further optimized with the gradient method. The optimized scaling re-
lations dictate the relationships that circuit elements in the model should have to obtain peak efficiencies.
Circuit elements were found from these solutions by substituting typical values into the relations, producing
a set of dimensional parameters (i.e. Le, C1, L1,etc). Since several of these dimensional parameters are
dependent on the coil and plasmoid geometry, a geometry needed to be fit to these values. This fitting
process is largely trial-and-error, where different combinations of coil-plasmoid geometries are inserted into
the dimensional form of the model (presented in Section III) and the governing equations (Eq. 1 - 7) are
numerically integrated to find the resulting acceleration efficiency. It is not always possible to satisfy each
parameter exactly, but if the acceleration efficiency predicted by the launcher model is close to (or better
than) the efficiency found using the optimization techniques, it is considered a good solution. Details of the
non-dimensionalization process, optimization routines, and evaluation of the dimensional model are detailed
in the following sections.

A. Non-Dimensional Model

The annular electromagnetic launcher model can be non-dimensionalized by expressing the independent
variables and dependent variables as non-dimensional terms: t∗ = t/t0, z∗ = z/z0, u∗z = uz/u0, V ∗ = V/V0,
I∗1 = I1/V0

√
Le/C1, I∗2 = I2/V0

√
Le/C1, and I∗3 = I3/V0

√
Le/C1. Here u0 = z0/t0. The variables t0 and z0

are time and length scales, which will be defined later. Substituting these into Equations 1 - 7 and forming
groups reduces the system to the following non-dimensional equations:

du∗z
dt∗

= −α
(
dk13

dz∗

√
θ1θ3I

∗
1 I
∗
3 +

dk23

dz∗

√
θ2θ3I

∗
2 I
∗
3

)
(11)

dz∗

dt∗
= u∗z (12)

V ∗c =
1
τ0

[
(τ0γe) (I∗1 + I∗2 ) + (1 + θ1 + θe1)

dI∗1
dt∗

+
dI∗2
dt∗

+ γ1τ0I
∗
1 − k13

√
θ1θ3

dI∗3
dt∗
− dk13

dz∗

√
θ1θ3I

∗
3u
∗
z

]
(13)

6
The 31st International Electric Propulsion Conference, University of Michigan, USA

September 20-24, 2009



0 = (θ1 + θe1)
dI∗1
dt∗
− (θ2 + θe2)

dI∗2
dt∗

+ γ1τ0I
∗
1 − γ2τ0I

∗
2 +

(
k23

√
θ2θ3 − k13

√
θ1θ3

) dI∗3
dt∗

+
(
dk23

dz∗

√
θ2θ3 −

dk13

dz∗

√
θ1θ3

)
I∗3u
∗
z (14)

0 = θ3
dI∗3
dt∗

+ γpτ0I
∗
3 − k13

√
θ1θ3

dI∗1
dt∗
− k23

√
θ2θ3

dI∗2
dt∗
−
(
dk13

dz∗

√
θ1θ3I

∗
1 +

dk23

dz∗

√
θ2θ3I

∗
2

)
u∗z (15)

dV ∗c
dt∗

= −τ0 (I∗1 + I∗2 ) (16)

The new non-dimensional groups are defined as:

γe = Re

√
C1

Le
γ1 = R1

√
C1

Le
γ2 = R2

√
C1

Le
γp = R3

√
C1

Le
(17)

α =
V 2

0 C1

m (z0/t0)2
τ0 =

t0√
LeC1

(18)

θ1 =
L1

Le
θ2 =

L2

Le
θ3 =

L3

Le
θe1 =

Le1

Le
θe2 =

Le2

Le
(19)

Applying non-dimensional parameters σ13 = z0/z13, σ23 = z0/z23, σs13 = zs13/z0, and σs23 = zs23/z0,
the coupling coefficients become:

k13(z∗) = k0
13 exp (−(|z∗ − σs13|σ13)n13) (20)

k23(z∗) = k0
23 exp (−(|z∗ − σs23|σ23)n23) (21)

where k0
13 and k0

23 are the nominal coupling coefficients for the outer coil-plasmoid and inner coil-plasmoid,
respectively. The non-dimensionalization reduces the 22 original variables to 19 non-dimensional variables.
Writing acceleration efficiency (Equation 10) in non-dimensional terms yields:

η∗accel =

(
u∗f

)2

α
(22)

For this model, if the plasmoid cannot leave the coils during its lifetime it is considered to have a final
velocity of zero and no acceleration efficiency. Setting z0 to the coil length and t0 as the confinement time,
only parameters which satisfy the relation z∗(t∗ = 1) ≥ 1 will be considered as solutions.

B. Model Optimization: Genetic Algorithms and Gradient Based Methods

Genetic algorithms are a common technique for optimizing large parameter sets which contain many singu-
larities, several local extrema, and non-differentiability. Since the annular electromagnetic launcher model
has many parameter sets where the plasmoid fails to translate (singularities) and can have several maxima,
a genetic algorithm is appropriate for this problem. Genetic algorithms use processes similar to genetic
evolution to optimize a cost function (also called an objective function or fitness function). The algorithm
starts by randomly selecting sets parameters. Each parameter is referred to as a chromosome. Each set of
chromosomes form an individual and a group of individuals make up a generation. Each individual is then
evaluated using a fitness function. In this case, the chromosomes for each individual are used as inputs for
the non-dimensional form of the model and Equation 22 is used to evaluate the individual’s fitness. The
chromosomes from the ”fittest” individual of the first generation are then used to form a second generation
of individuals using methods referred to as reproduction, cross-over, and mutation. During reproduction, the
individuals with the best fitness are given the highest probability of having their chromosomes replicated in
the coming generation. Though less likely, some of the chromosomes from the least fit individuals can show
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up in the next generation to ensure a diverse population. This new population is then crossed and mutated.
Cross-over is when two individuals swap single chromosomes and mutations occur where single chromosomes
are randomly changed. This keeps the optimization routine from settling around a premature extrema. The
second generation is evaluated for fitness and is reproduced, crossed, and mutated into a third generation.
The process continues until either the generations stop evolving or some defined limit is reached.

A genetic algorithm using the principles outlined above was adapted from one made available for MatLab
by Michael Gordy19 and uses the methods of Dorsey and Mayer.20

Genetic optimization works well to locate the general vicinity of maxima for large parameter set prob-
lems. Gradient-based methods can then be used to pinpoint the extrema using the output from the genetic
algorithm as a starting point. The ten highest individuals from several trials of the genetic algorithm were
used as starting points for MatLab’s multi-variable constrained optimization routine fmincon. This opti-
mization tool begins at a starting point and calculates the derivative in each direction using either the finite
difference method or a user-supplied gradient. The fmincon routine searches for a minimum (as opposed
to a maximum) so the cost function used in the genetic algorithm had to be inverted. The minima of the
inverted cost function is obtained when the change in the derivative falls below a set limit. The locations of
extrema from the optimization routine are expressed in non-dimensional groups, implying an infinite combi-
nation of circuit elements are possible as long as they satisfy these relations. A single combination of circuit
elements from this large pool can be found by substituting in values for z0, t0, and one of the following
circuit parameters: Le, L1, L2, L3, or C1. Since several of the circuit elements are geometry dependent (for
example, coil inductance depends on coil geometry), coil and plasmoid dimensions must be fit to them. It
must be cautioned that not all parameter combinations from the optimization routines have a physically
viable solution. For example, to satisfy the required value for L3 might require a plasmoid which extends
beyond the coils and this is not physically possible in an AFRC. To ensure that a good solution is found,
the number of parameter sets selected from the output of the genetic algorithm should be sufficiently large
(in this paper, ten sets were chosen) and diverse.

C. Solving the Dimensional Model

A dimensional solution to the optimized scaling relations can be found by substituting in appropriate values
for z0 (coil length), t0 (plasmoid lifetime), and a circuit element (Le, L1, L2, L3, or C1) using the relations
shown in Equation 17 - 19. This substitution provides a list of circuit elements C1, Le, Le1, Le2, Re, R1 and
R2 which can be fixed at their resulting value. The remaining circuit elements are geometry dependent, so
the remaining inner and outer coil geometries (radius and cone angle, coil length is equal on both coils and
is fixed at z0) and plasmoid geometry (height, width) must be found so the corresponding inductances and
coupling parameters roughly satisfy their expected value. This fitting process is largely done by trial-and-
error. A good starting point for this process is to select coil dimensions and estimate their inductance using
formularies, such as Lundin,21 so they come close to L1 and L2. These formularies are only valid for low
frequency applications less than 1 kHz whereas the discharge frequency for AFRC devices is usually above
10 kHz, but they provide a good estimate.

Once coil dimensions are found so that estimates for L1 and L2 are close to their expected value, their
frequency-dependent inductance can be calculated with electromagnetic field solvers. These field solvers
can also be used to find the plasmoid inductance and the mutual inductance profiles between the coils and
plasmoid. The electromagnetic field solvers chosen for this work are from COMSOL’s Multiphysics software; a
demonstration of how these solvers can be used to find inductance is provided here. In COMSOL, the coil and
plasmoid geometry was modeled using a 2D-axisymmetry with a time-harmonic solver, insulative boundary
conditions, and an arbitrary cone angle for the outer coil. A ”plasmoid” was drawn to occupy a fraction of
the space between the inner and outer coils, following the contours of the outer coil. The bounding geometry
was made sufficiently large to minimize field disturbances around the coils and plasmoid. The mesh was
generated using boundary layer meshing on the inner and outer coils to resolve skin currents and triangular
meshing for the rest of the domain. Mesh elements no larger than 0.5 mm along the plasmoid boundary
were used. This was the smallest element size that could be used without running out of memory and
maintain sufficient resolution. Figure 4 displays a typical geometry with the mesh visible. The conductivity
of the plasmoid was set to 30,000 S/m, found with Equation 9 (σ = 1/ρ) and a plasma temperature of 10
eV. The self-inductance of each inductor L1, L2, and L3 was found by making the other inductors invisible
(conductivity of zero) and applying a sinusoidal loop potential (Vloop = 500 V) to the remaining coil. The
frequency for these simulations was calculated from C1 and the total circuit inductance, using the Lundin
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estimated values for L1 and L2 (ω = 1/
√

(LC)). Over a small range of frequencies, inductance does not
change significantly so generally this estimated frequency was sufficient. Once the COMSOL simulations were
completed, the frequency was recalculated with the new coil inductance values. If it differed from the original
frequency by more than 50 percent, the inductance simulations were repeated with the new frequency. After
proper boundary conditions, conductivity, frequency, and potentials were applied, the currents and fields
were calculated with the electromagnetic solvers. The inductance was then found from inductive impedance:
L = imag(Vloop/Itotω), where Itot is the integrated current density (total current) in the coil and ω is the
frequency of the signal.

Figure 4. Typical coil mesh and geometry used for COMSOL simulations. The detail view shows the boundary
layer mesh used on the coils to resolve skin currents.

The mutual inductance between the coils and plasmoid M13, M23 was found by applying a loop potential
Vloop to only one of the coils. The conductivity of the plasmoid was set to 30,000 S/m and the other coil
was neglected (conductivity of zero). The currents and fields were found and the inductance on the coil
was calculated from inductive impedance. The current induced in the plasmoid will change the current
distribution in the coil, so the inductive impedance in the coil is actually a combination of self inductance of
the inner or outer coil Lc (depending on which one was activated), plasmoid Lp, and the mutual inductance
M . The three quantities can be related through the following equation:

Leff = Lc −
M2

Lp
(23)

This equation can be verified through a quick circuit analysis and is cited elsewhere.1,14 To find how the
mutual inductance varies with plasmoid position, the plasmoid is moved to a new axial position and the
analysis is repeated. A curve fit to the resulting data yields values for the coefficients in Equation 8.

The mutual inductance profile and coil inductances calculated using COMSOL can be supplied to the
annular electromagnetic launcher model described by Equations 1 - 7, along with the specified circuit pa-
rameters C1, Le, Le1, Le2, Re, R1 and R2. Plasmoid mass can be found using the volume of the plasmoid
and the plasma density (typically close to 1019 particles/m3). The charging voltage on the capacitor is cal-
culated by inserting C1, z0, t0, and m into the relation for α (Eq. 18). Plasmoid resistance R3 is found from
plasmoid volume and Spitzer resistivity. The model equations with the inputs can numerically integrated to
find the currents and plasmoid trajectories. In this work, MatLab’s ode45 numerical integration tool was
used. It is an explicit 4th order Runge-Kutta solver, ideal for medium-accuracy, non-stiff problems. Once the
plasmoid position and velocity are found, the acceleration efficiency ηaccel for a plasmoid can be calculated
using Equation 10. If the plasmoid’s position at t = t0 is less than the coil length z0, the plasmoid does
not translate from the coils so ηaccel is zero. If ηaccel is close to (± 0.1) or greater than the acceleration
efficiency predicted by the optimization routines η∗accel, the coil geometry and circuit elements are considered
an acceptable solution. If ηaccel falls short of η∗accel, a new coil or plasmoid must be selected and the process
re-iterated until an acceptable solution is reached.
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D. Verification of Numerical Methods and Model

Figure 5. Comparison of effective inductance profiles
for the PTX experiment.

The methods for finding mutual inductance profiles
using electromagnetic field solvers was verified by re-
constructing the PTX experiment by Martin and Es-
kridge14 in COMSOL’s Multiphysics software. The
PTX experiment used a conical theta pinch coil of
17.5 ◦ with an aluminum slug to mimic the plas-
moid. They measured an effective inductance profile
experimentally and calculated one using QuickField
software. Repeating their experiment in COMSOL
provided the Leff (z) shown in Figure 5. Comparing
this profile (labeled in Figure 5 as COMSOL data) to
the results obtained by Martin and Eskridge shows
good agreement in trend and minimal difference in
magnitude. These findings substantiate the compu-
tational methods for determining the mutual induc-
tance profile M(z) as outlined previously.

Since experimental studies of inductive annular
electromagnetic launchers are not available, the an-
nular electromagnetic launcher model was validated
in two steps. First, the equations of motion (Equa-
tions 1, 2) coupled with the circuit equations (Equations 3, 4, 5, 6, 7) were tested using data published
for the ring launcher by Novac.16 The inner coil circuit was ignored by setting R2 = 100 Ω, L2, M23 = 0.
Setting a high impedance in this branch of this circuit shunts 99.99 percent of the current through the outer
coil circuit and the circuit behaves as if the inner coil were not there. The remaining parameters were set
to values from Table 1 in Novac:16 m = 0.7 g, C1 = 31.8 µF , Le = 12.7 nH, Re = 1 mΩ, L1 = 63.6 nH,
and L3 = 74.7 nH. The projectile resistance R3 was set to 15 mΩ and the capacitor charged to 30 kV. The
mutual inductance profile was not specified, but Martin and Eskridge who performed a similar validation
study for a model they developed used k0 = 0.98, z0 = 5 mm, n = 1, and zs = 0 with good results. The
annular electromagnetic launcher model with these parameters determined the final projectile velocity to be
3.78 km/s, near the 4 km/s terminal velocity reported by Novac. This validation step was done for both the
non-dimensional and dimensional form of the model.

Figure 6. Comparison of circuit currents I0, I1, I2 with XOCOT-T experimental data.

Following validation of the equations of motion, the coil circuit equations (Equations 3, 4, 5, 7) were
tested using circuit parameters from the XOCOT-T.4 These include: Vc = 1444 V, C = 225 µF, Le = 1.53
µH, Re = 16 mΩ, L1 +Le1 = 2.29 µH, L2 +Le2 = 746 µH, R1, R2 = 1 mΩ. The coil, transmission line, and
external inductances for the XOCOT-T were measured with an Agilent 4294A Impedance Analyzer. The
external resistance Rext was adjusted to match the damping on the experimental data, since this value was
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not measured. The circuit equations (Equations 3, 4, 5, 7) were solved to find I0, I1, and I2. These were
compared to measurements from Pearson current monitors on the XOCOT-T experiment. As is shown in
Figure 6, exceptional agreement between the experimental data and the circuit solutions was found. This,
combined with the launcher model validation outlined in the previous paragraph, shows that the annular
electromagnetic launcher model should provide fairly reliable results.

V. Preliminary Results and Discussion

The optimization methodology detailed above was demonstrated by running a test case. Though the
results are preliminary, they indicate that the methodology presented in this paper can result in a physically-
realizable geometry. The test case was started by using the genetic algorithm routine written in MatLab to
find parameter combinations with η∗accel ≥ 0.5 for the non-dimensional form of the annular electromagnetic
launcher model. Upper bounds and lower bounds for the non-dimensional parameter space were defined as
shown in Table 1. An initial guess was also provided. This was used as the chromosome set for one individual
of the first generation. The remaining individuals were randomly seeded.

Table 1. Parameter Space Definitions for the Genetic Algorithm

parameter θ1 θ2/θ1 θ3/θ1 γe γp α τ0 k13 k23 σ13 σ23/σ13

upper 10 0.5 0.5 1 1 1000 5 0.7 0.7 2.0 1.1
lower 0.001 0.001 0.001 10−4 10−4 0.001 0.001 0.1 0.1 0.1 0.9
initial 1.0 0.01 0.01 10−4 10−4 0.001 0.01 0.55 0.55 0.2 1.0

n13 n23 θe1 θe2 γ1 γ2 σs13 σs23

upper 3.0 3.0 1.0 1.0 1.0 1.0 0.01 0.01
lower 1.0 1.0 0.001 0.001 10−4 10−4 10−4 10−4

initial 1.0 2.5 0.001 0.001 10−4 10−4 10−4 10−4

Table 1 shows the default settings; three different trials were performed with the upper bound of α set
to 100, 500, and 5000. Each trial was started using a population size of 20 individuals per generation.
Dorsey and Mayer suggest a population size of 24, however anything greater than 20 increased the total
computation time extensively. The individual with the highest efficiency from each generation was stored
until an individual with a higher fitness was found. To decrease the time to convergence, every 50 iterations
a random individual was replaced by this fittest individual. The simulation was stopped when the efficiency
did not increase by 10−4 in 2000 consecutive generations. The algorithm created over 16,000 generations,
taking 116 hours to complete. A depiction of how the generations evolved over the course of the simulation
can be shown in Figure 7, where the best efficiency from every 10th generation is plotted. By following
the highest markers for each generation, it can be noticed how total efficiency increases over time before
the solution terminates at η∗accel = 0.69. While the overall fitness of the entire population increases with
generation, there are still many generations with η∗accel significantly below the leading η∗accel as evidenced
by the abundance of markers in the η∗accel = 0.2 to η∗accel = 0.5 region. From this, it appears that the
generations do not evolve as quickly as they could. Speculation for why this happens is still preliminary, but
it is thought that this could be caused by a high mutation rate or it could be due to the highly irregular
nature of the fitness function. Further investigations into why this occurs as well as methods for reducing
the computation time are necessary.

Each individual with an efficiency of greater than 0.5 was saved during the genetic algorithm routine.
When the routine completed, these individuals were sorted according to efficiency and the ten fittest indi-
viduals from each trial were passed to the fmincon solver for the second round of optimization. For the
trial shown in Table 1, all the top 10 individuals had an efficiency close to 0.69. They emerged from the
second optimization round with efficiencies of 0.75, deviating from this by less than 0.0001. The small de-
viation indicates they are all fair solutions with regard to maximum efficiency; it is difficult to single out
one solution based on efficiency. Not all the individuals generated during the second optimization round
were physically viable solutions; though reasonable bounds were placed on the non-dimensional terms shown
in Table 1, some of the results from the optimization routines were geometry combinations that are not
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Figure 7. Evolution of the genetic algorithm over 16,000 generations. The efficiency of each generation is
plotted. Every 10th generation is shown for clarity.

physically possible. These were discarded and one individual out of the remaining individuals was chosen
for further investigation. The non-dimensional parameter set from this individual is displayed in Table 2, as
the ”target” individual. For this individual, η∗accel = 0.753.

The target individual’s parameter set was put into dimensional terms by choosing the coil length and
plasmoid lifetime: z0 = 12 inches and t0 = 20 µs. The outer coil inductance L1 was also fixed by choosing
the coil to have a 5 inch radius and a single turn. From Lundin’s formulary,21 the inductance of this coil
is approximately 152 nH. Using Equations 17 - 19 with the values shown in row 1 of Table 2, the following
circuit elements were calculated: C1 = 1,400 µF , Le = 15.2 nH, Re, R1, R2 = 0.33 µΩ, and Le1, Le2 =
15.2 pH. These inductances and resistances are lower than can probably be achieved in a physical circuit,
since external inductances are usually 40 - 100 nH and resistances are typically slightly under 1 mΩ. As can
be noticed from Table 2, peak efficiency happens when the scaling relations for these parameters hit their
lower bound. Future studies should adjust the lower bounds on these parameters to a more appropriate
level. Continuing with these parameters for demonstration purposes, a coil and plasmoid geometry must
be found to sastify the remaining target values. Unfortunately, this must be accomplished using trial-and-
error. As a starting point, it was decided that the coil dimensions would be fixed and several different cone
angles from 1 ◦ up to 15 ◦ would tested. With the dimensions of the outer coil set to a radius of 5 inches
and length of 12 inches, the inner coil should have a radius of 3.35 inches so that L2 = 0.5L1 (see Table
2). The outer and inner coil were modeled in COMSOL and plasmoid was drawn between them to be 70
percent of the annulus width and annulus height. The coil inductances, plasmoid inductance, and mutual
inductance profiles M13(z) and M23(z) were found from inductive impedance. Curve fits to the data for
M13(z) and M23(z) yield the coefficients described in the equations. Since plasmoid resistance and plasmoid
mass depend on plasmoid volume, these values were recalculated in-situ for each cone angle. Also, since α
= (C1V

2
c )/(mu2

0), Vc also needed to be recalculated for each cone angle. As a sample, at a cone angle of 5 ◦,
m = 2.25 x 10−8 kg (plasma density of 3 x 1019 m−3), R3 = 0.14 mΩ (conductivity of 30,000 S/m), and
Vc = 1.0 kV. The new values for L1, L2, and L3, along with M13 and M23 were inserted into Equations 1
- 7. MatLab’s ode45 solver then calculated the coil currents and plasmoid trajectories at each cone angle.
Acceleration efficiency was found for each plasmoid that was able to leave the coils during t0. The results
are plotted in Figure 8.

Acceleration efficiency depends strongly on the cone angle, as in apparent in Figure 8. This can be
understood by examining Equation 1. Maximizing the kinetic energy of the plasmoid requires that the
plasmoid reaches the axial location of peak dM/dz at the same time the coil currents peak. The peak
dM/dz occurs right outside the ends of the coils, where the magnetic field diverges the greatest. Too small
of a cone angle will keep the plasmoid from reaching this region during peak coil current and too large of a
cone angle will eject the plasmoid before the peak currents develop. The cone angle that best matches the
target efficiency is at 5 ◦ apparent from Figure 8. This solution has ηaccel = 0.79.

Since the objective of this demonstration was to find scaling relations which result in the highest efficiency
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Figure 8. Acceleration efficiency for different cone angles for dimensional study. The dashed line represents
the target efficiency from the optimization routines.

Table 2. Comparison of Parameter Set from Optimization Studies and Dimensional Studies

parameter θ1 θ2/θ1 θ3/θ1 γe γp α τ0 k13 k23 σ13 σ23/σ13

target 10 0.5 0.4944 10−4 10−4 273.04 4.3264 0.7 0.7 1.4429 1.0470
case 5 11.0 0.43 0.77 10−4 0.04 273.04 4.3264 0.76 0.72 1.05 1.10
change 0.1 -0.15 0.56 0 407 0 0 0.08 0.03 -0.27 0.05

n13 n23 θe1 θe2 γ1 γ2 σs13 σs23

target 2.06 2.80 0.001 0.001 10−4 10−4 7.64 x 10−4 0.0046
case 5 2.21 3.04 0.001 0.001 10−4 10−4 0 0.13
change 0.07 0.09 0 0 0 0 -1 27.66

and see if a physical solution can be found to satisfy these relations through trial and error, it is useful to
compare the target parameters with the physical solution. The circuit parameters used to obtain the results
shown in Figure 8 at 5 ◦ (Case 5), were converted back into non-dimensional terms using the scaling relations
shown in Equations 17 - 19. The comparison is shown in Table 2. Most of the candidate parameters differ
from the target parameters by less than 30 percent. Though plasmoid resistance γP and plasmoid inductance
θ3 from the dimensional simulation is significantly higher than the optimal found by the optimization study,
it is not enough to decrease the acceleration efficiency. The relative plasma inductance θ3 and coupling
coefficients k13 and k23 for the dimensional simulation (candidate solution) exceed the limits placed on the
optimization routine, as is shown in Table 2. For the optimization study, these limits were set as ”soft”
limits or regarded as limits that technology and experimental design probably could not exceed. With the
dimensional study, it is shown that it is possible to slightly exceed these limits and when it happens, it
results in a greater than expected efficiency.

The optimization routine found that the maximum efficiency happens when θ1, θ2, θ3, k13 and k23

approach the upper limit and γE , γp, γ1, γ2, θe1, and θe2 are minimal. This result should come as no surprise.
The first group of terms maximizes the amount of energy from the capacitor which can be transferred to the
coils and the last group of terms remove energy from the circuit without providing any acceleration to the
plasmoid. With confirmation of how these terms affect efficiency, it would be instructive to fix these terms
at their appropriate limits and conduct further optimization studies on the remaining terms to see how they
impact solution.

As previously stated, the purpose of this preliminary exercise was to demonstrate the application of an
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optimization routine to the annular electromagnetic launcher model. Though this exercise requires further
refinement and investigation, the preliminary findings indicate that it is possible to obtain meaningful results
from these methods and close to the target efficiency. Most of the values obtained from the dimensional
study come within 30 percent of the target value. This is exciting when one considers following discussion.
The AFRC setup is a dynamic system where the circuit elements and coil geometries strongly influence
each other’s behavior. For instance, the outer coil is an inductor and therefore contributes to the discharge
frequency, which through the skin effect dictates how the currents are distributed in the coils. The current
distribution will change the inductance of the coil, the inductance of the total system, and the coupling
of the coils and plasmoid (k13, k23, z13, z23, zs13, zs23). Therefore, it is impossible to change one element
of the setup without other elements changing. The optimization routine does not consider this dynamic
behavior and independently selects parameters that will result in the best efficiency for the system. Once
a final verdict is reached, a circuit and geometry must be fit to the outcome of the optimization routine.
It is entirely likely that the parameters selected by the optimization will not have a physical solution (for
example, the plasmoid might have to extend beyond the coils to achieve the target inductance). Having
evidence that a viable solution can be reached promotes further development of this approach.

VI. Conclusion

An annular electromagnetic launcher model has been developed to predict the translation physics of an
AFRC plasmoid. This model has been optimized for peak efficiency using a combination of methods. Non-
dimensionalization of the model provides scaling relations between model parameters to obtain a generalized
solution. The non-dimensional form of the model was put into a genetic algorithm to find the relative location
of local maxima. These parameter sets were then re-optimized using a gradient based solver (fmincon in
MatLab) to pinpoint the maximum efficiency. A set of dimensional parameters was fit to one of the scaling
relation sets from the optimization round. The annular electromagnetic launcher model was then used to find
the efficiency of this dimensional parameter set. The result of ηaccel = 0.79 closely matched the predicted
value from the optimization round η∗accel = 0.75. The preliminary results of these studies indicate that it
is possible to find a coil and plasmoid geometry to obtain the peak efficiency predicted by the optimization
techniques. However, further refinement of the results are necessary before accurate efficiency predictions
can be made.

VII. Future Work

The annular electromagnetic launcher model combined with the optimization routines presented in this
paper is in the preliminary stage of investigation. Further work on this optimization can find ways to reduce
the computation time and increase the number of useful data sets from the optimization process. Sensitivity
studies on the results can be done to show how certain parameters contribute to the overall efficiency.
This model is based on information about the AFRC plasmoid that is not readily available. Experiments
on stationary plasmoids are necessary to get more information about plasma temperatures, densities, and
plasmoid shapes. Finally, experimental studies on AFRCs are necessary to validate the model and provide
information about AFRC plasmoid translation which is not treated in this model (plasmoid expansion,
magnetic fields, etc).
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